Fiche de révision 2 Suites usuelles et récurrences

1 Compétences et notions à maîtriser

- ▷ C1 : Effectuer un raisonnement par récurrence (simple, à deux pas et forte)
- ightharpoonup C2: Étudier des suites arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre deux
- ▷ C3 : Déterminer le sens de variation d'une suite, suite majorée, minorée, bornée
- \triangleright C4: Notion de suite convergente (définition « avec les ε »)
- ▷ C5 : Effectuer des opérations sur les limites, limites usuelles (et notamment les croissances comparées)
- > C6 : Utiliser le théorème de comparaison, théorème des gendarmes, théorème de la limite monotone
- ▷ C7 : Utiliser le théorème sur les suites extraites des termes pairs et impairs
- > C8 : Notion de suites adjacentes (et conséquence : des suites adjacentes convergent vers une même limite)
- ▷ C9 : Notion de suites équivalentes (définitions, propriétés et équivalents usuels)
- ▷ C10 : Utiliser le théorème des sommes de Riemann
- ▷ C11 : Écrire une suite (de manière récursive ou non) ou une somme avec python

2 Rappels de cours

2.1 Les récurrences

Pour montrer qu'une propriété P(n) dépendant de l'entier n est vraie pour tout entier $n \ge n_0$, on utilise un raisonnement par récurrence en trois étapes :

- 1. **Initialisation :** La propriété est vraie au rang initial n_0 .
- 2. **Hérédité** : Soit $n \ge n_0$ fixé, on suppose que la propriété est vraie au rang n. On montre que la propriété est vraie au rang n+1.
- 3. Conclusion : La propriété est initialisée et elle est héréditaire, donc par principe de récurrence pour tout $n \ge n_0$, P(n) est vraie.

Pour montrer qu'une propriété P(n) dépendant de l'entier n est vraie pour tout entier $n \ge n_0$, on utilise un raisonnement par récurrence double en trois étapes :

- 1. **Initialisation :** La propriété est vraie au rang initial n_0 et au rang $n_0 + 1$.
- 2. **Hérédité :** Soit $n \ge n_0$, on suppose que la propriété est vraie au rangs n et n + 1. On montre que la propriété est vraie au rang n + 2.
- 3. Conclusion : La propriété est initialisée et elle est héréditaire, donc par principe de récurrence double pour tout $n \ge n_0$, P(n) est vraie.

Pour montrer qu'une propriété P(n) dépendant de l'entier n est vraie pour tout entier $n \ge n_0$, on utilise un raisonnement par récurrence forte en trois étapes :

- 1. **Initialisation :** La propriété est vraie au rang initial n_0 .
- 2. Hérédité : Soit $n \ge n_0$, on suppose que la propriété est vraie pour tout entier $k \in [n_0, n]$. On montre que la propriété est vraie au rang n + 1.
- 3. Conclusion : La propriété est initialisée et elle est héréditaire, donc par principe de récurrence forte pour tout $n \ge n_0$, P(n) est vraie.

2.2 Les différents types de suites usuelles

La suite (u_n) est **arithmétique de raison** $r \in \mathbb{R}$ à partir du rang n_0 si

$$\forall n \geq n_0, u_{n+1} = u_n + r.$$

L'expression de la suite en fonction de n est la suivante :

$$\forall n \geq n_0, u_n = u_{n_0} + (n - n_0)r.$$

La somme des termes d'une suite arithmétique vaut :

$$\sum_{k=n_0}^n u_k = (n-n_0+1)\frac{u_n+u_{n_0}}{2} = \text{nombre de termes} \times \frac{\text{premier terme+dernier terme}}{2}.$$

La suite (u_n) est **géométrique de raison** $q \in \mathbb{R}$ si et seulement si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n.$$

L'expression de la suite en fonction de n est la suivante :

$$\forall n \geq n_0, u_n = u_{n_0} q^{n-n_0}.$$

La somme des termes d'une suite géométrique de raison $q \neq 1$ vaut :

$$\begin{split} \sum_{k=n_0}^n u_k &= \frac{u_{n_0} - u_{n+1}}{1 - q} = \frac{\text{premier terme présent - premier terme qui manque}}{1 - \text{raison}} \\ &= u_{n_0} \times \frac{1 - q^{n - n_0 + 1}}{1 - q} = \text{premier terme} \times \frac{1 - \text{raison}^{\text{nombre de termes}}}{1 - \text{raison}}. \end{split}$$

La suite (u_n) est **arithmético-géométrique** s'il existe $a \neq 1$ et $b \neq 0$ tels que

$$\forall n \in \mathbb{N}, u_{n+1} = a u_n + b.$$

Pour déterminer l'expression d'une suite arithmético-géométrique en fonction de n, on procède comme suit :

- 1. On résout l'équation x = ax + b. On note α la solution.
- 2. On pose $v_n = u_n \alpha$. On montre que (v_n) est une suite géométrique de raison a:

$$\begin{cases} u_{n+1} = a \times u_n + b & \text{(L1)} \\ \alpha = a \times \alpha + b & \text{(L2)} \end{cases}$$

donc en faisant L1-L2, on obtient:

$$\underbrace{u_{n+1} - \alpha}_{v_{n+1}} = a \times (\underbrace{u_n - \alpha}_{v_n}) \Leftrightarrow v_{n+1} = a \times v_n.$$

- 3. On en déduit l'expression de v_n en fonction de n.
- 4. On utilise la relation $u_n = v_n + \alpha$ pour obtenir l'expression de u_n en fonction de n.

La suite (u_n) est récurrente linéaire d'ordre 2 s'il existe deux réels a et b tels que :

$$\forall n \in \mathbb{N}, u_{n+2} = a u_{n+1} + b u_n.$$

Pour déterminer l'expression d'une suite récurrente linéaire d'ordre 2 en fonction de n, on procède comme suit :

1. On écrit l'équation caractéristique correspondante :

$$x^2 - ax - b = 0 \ (*)$$

et on calcule le discriminant associé : $\Delta = a^2 + 4b$.

2. On distingue trois cas selon le signe du discriminant :

	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
Solutions de (*)	r_1 et r_2	r_0	$z_1 = re^{i\theta}$ et $\overline{z_1} = re^{-i\theta}$
Expression	$\exists (A,B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N},$	$\exists (A,B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N},$	$\exists (A,B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N},$
(u_n)	$u_n = Ar_1^n + Br_2^n$	$u_n = r_0^n (An + B)$	$u_n = r^n (A\cos(n\theta) + B\sin(n\theta))$

3. Pour déterminer A et B, on écrit les équations correspondant à n=0 et n=1. Elles forment un système que l'on résout.

2.3 Les théorèmes de convergence

Théorème 2.3.1 (Encadrement) Si $\forall n \in \mathbb{N}, u_n \leq v_n \leq w_n$ et que les suites (u_n) et (w_n) convergent vers une même limite ℓ , alors la suite (v_n) est convergente et

$$\lim_{n \to +\infty} v_n = \ell.$$

Théorème 2.3.2 (Comparaison) Soient (u_n) et (v_n) deux suites avec $\forall n \in \mathbb{N}, u_n \leq v_n$:

- 1. $\lim_{n \to +\infty} u_n = +\infty \Rightarrow \lim_{n \to +\infty} v_n = +\infty$
- 2. $\lim_{n \to +\infty} v_n = -\infty \Rightarrow \lim_{n \to +\infty} u_n = -\infty$

Théorème 2.3.3 (Théorème de la limite monotone)

- Soit (u_n) est une suite croissante :
- si (u_n) est majorée, alors elle converge,
- si (u_n) n'est pas majorée, alors $\lim_{n \to +\infty} u_n = +\infty$.
- Soit (u_n) est une suite décroissante :
 - si (u_n) est minorée, alors elle converge,
 - si (u_n) n'est pas minorée, alors $\lim_{n\to+\infty} u_n = -\infty$.

Proposition 2.3.4 (Suites extraites) Les suites (u_{2n}) et (u_{2n+1}) convergent vers la même limite si et seulement si la suite (u_n) converge vers cette limite.

On dit que les deux suites (u_n) et (v_n) sont **adjacentes** si et seulement si :

- 1. la suite (u_n) est croissante
- 2. la suite (v_n) est décroissante
- 3. $\lim_{n \to +\infty} (u_n v_n) = 0$

Théorème 2.3.5 Si deux suites sont adjacentes, alors

$$\forall n \in \mathbb{N}, \ u_0 \le u_n \le v_n \le v_0.$$

3

De plus, les deux suites convergent et ont même limite.

2.4 Les calculs de limites

Lorsqu'on est confronté à une forme indéterminée lors d'un calcul de limite de suite, on utilise l'une des techniques suivantes.

Théorème 2.4.1 (Équivalents usuels) Si $\lim_{n\to+\infty} u_n = 0$, alors :

1.
$$\sin(u_n) \sim u_n$$

4.
$$\ln(1+u_n) \sim u_n$$

2.
$$e^{u_n} - 1 \sim u_n$$

5.
$$(1+u_n)^{\alpha} - 1 \sim \alpha u_n$$

3.
$$tan(u_n) \sim u_n$$

6.
$$1 - \cos(u_n) \sim u_n^2/2$$

Théorème 2.4.2 (Croissances comparées) Pour tout $(\alpha, \beta, \gamma) \in (\mathbb{R}_+^*)^3$, on a :

$$\ln(n)^{\alpha} \ll n^{\beta} \ll e^{\gamma n} \ll n! \ll n^n$$

où la notation $u_n \ll v_n$ signifie $\lim_{n \to +\infty} \frac{u_n}{v_n} = 0$ (ou $\lim_{n \to +\infty} \frac{v_n}{u_n} = +\infty$).

2.5 Sommes de Riemann

Théorème 2.5.1 Soit $(a,b) \in \mathbb{R}^2$ avec a < b. Soit f continue sur [a,b]. On a :

$$\lim_{n\to\infty}\frac{b-a}{n}\sum_{k=0}^{n-1}f\left(a+k\;\frac{(b-a)}{n}\right)=\int_a^bf(t)\,\mathrm{d}t$$

$$\lim_{n \to \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{(b-a)}{n}\right) = \int_{a}^{b} f(t) dt$$

3 Exercices

Exercice 1 (C1) $\ \ \$ Soit la suite $(U_n)_{n\in\mathbb{N}}$ définie par $U_0=2$ et :

$$\forall n \in \mathbb{N}, \qquad U_{n+1} = 1 + \frac{1}{U_n}$$

Montrer par récurrence que la suite est bien définie et que tous les termes de la suite appartiennent à l'intervalle $\left[\frac{3}{2},2\right]$.

Exercice 2 (C1) $\ \ \, \ \,$ Soit $(F_n)_{n\in\mathbb{N}}$ la suite définie par $F_0=F_1=1$ et :

$$\forall n \in \mathbb{N}^*, \qquad \mathbf{F}_{n+1} = \mathbf{F}_n + \mathbf{F}_{n-1}$$

Montrer que, pour tout $n \in \mathbb{N}^*$, on a $F_n < \left(\frac{5}{3}\right)^n$.

Exercice 3 (C1) $\ \ \,$ On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0,\,u_1=3$ et :

$$\forall n \in \mathbb{N}^*, \qquad u_{n+1} = \frac{2}{n} \sum_{k=0}^n u_k$$

Montrer que pour tout $n \in \mathbb{N}$, on a $u_n = 3n$.

Exercice 4 (C1) Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout $n \ge 0$,

$$u_{n+1} = u_0 + u_1 + \ldots + u_n.$$

4

Démontrer par récurrence forte que, pour tout $n \ge 1$, $u_n = 2^{n-1}$.

Exercice 5 (C2-C4-C11) Déterminer le terme général de chacune des suites définies par :

- 1. $L_0 = 2$ et pour tout $n \in \mathbb{N}$, $L_{n+1} = -2L_n 3$
- 2. $u_1 = 1$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = u_n + 3$
- 3. $v_0 = 4$ et pour tout $n \in \mathbb{N}^*$, $v_n = -v_{n-1}$
- 4. $w_1 = 3$ et pour tout $k \in \mathbb{N}^*$, $w_{k+1} = 5w_k + 1$
- 5. $a_0 = -5$, $a_1 = 5$ et pour tout $k \in \mathbb{N}^*$, $a_{k+1} = 3a_{k-1}$
- 6. $b_0 = 0, b_1 = 1$ et pour tout $n \in \mathbb{N}, b_{n+2} = -\sqrt{2}b_{n+1} b_n$
- 7. $c_0 = 1, c_1 = \frac{1}{2}$ et pour tout $n \in \mathbb{N}, c_{n+2} = -c_{n+1} c_n$
- 8. $x_1 = \sqrt{3}, x_2 = 2$ et pour tout $\ell \in \mathbb{N}^*, x_{\ell+2} = 2\sqrt{3}x_{\ell+1} 4x_{\ell}$
- 9. T(0) = 1, $T(1) = 3\sqrt{2}$ et pour tout $t \in \mathbb{N}^*$, $T(t+1) = 3\sqrt{2}T(t) + 9T(t-1)$
- 10. $\theta_1 = 2$, $\theta_2 = 16$ et pour tout $n \in \mathbb{N} \setminus \{0, 1\}$, $\theta_{n+1} = 4\theta_n 4\theta_{n-1}$
- 11. (a) Écrire une fonction python prenant en entrée un entier naturel n et renvoyant la valeur de x_n .
 - (b) Écrire un script qui demande à l'utilisateur un nombre positif M et qui renvoie la plus petite valeur de n pour laquelle $x_n > M$.

Exercice 6 (C3) 🗇 Étudier les variations de la suite :

- 1. $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{n^2}{n!}$ pour tout $n\in\mathbb{N}^*$;
- 2. $(I_n)_{n\in\mathbb{N}}$ définie par $I_n = \int_0^{\pi/4} \tan(t)^n dt$ pour tout $n\in\mathbb{N}$;
- 3. $(a_k)_{k\in\mathbb{N}}$ définie par $a_k=k-2^k$ pour tout $k\in\mathbb{N}$;
- 4. $(h_n)_{n\in\mathbb{N}^*}$ définie par $h_n=\sum_{k=1}^n\frac{1}{k}-\ln(n)$ pour tout $n\in\mathbb{N}^*$ en montrant préalablement que pour tout

Exercice 7 (C5) Déterminer la limite des suites de termes généraux suivants :

1.
$$s_n = n^2 - n\cos(n) + 12$$

5.
$$w_n = 3^n - e^n$$

2.
$$t_n = \frac{n + e^{-n} + \ln(n)}{\sqrt{n} + 2}$$

2.
$$t_n = \frac{n + e^{-n} + \ln(n)}{\sqrt{n} + 2}$$
3. $u_n = n \ln\left(\frac{n+1}{n-1}\right)$
4. $v_n = \frac{\ln\left(\cos\left(\frac{3}{n}\right)\right)}{\sin(e^{-n})}$
5. $u_n = 3 - e$
6. $x_n = \sum_{k=1}^n \frac{1}{n^2 + 2k \ln(n)}$
7. $y_n = \left(1 + \frac{1}{e^n}\right)^{n^2}$
8. $z_n = \sqrt{n^2 + n + 1} - n$

$$3. \ u_n = n \ln \left(\frac{n+1}{n-1} \right)$$

$$7. \ y_n = \left(1 + \frac{1}{\mathrm{e}^n}\right)^{n^2}$$

4.
$$v_n = \frac{\ln\left(\cos\left(\frac{3}{n}\right)\right)}{\sin(e^{-n})}$$

8.
$$z_n = \sqrt{n^2 + n + 1} - n$$

Indication: pour la suite $(x_n)_{n\geq 1}$, procéder par encadrements.

Exercice 8 (C9) \square Donner un équivalent simple de u_n quand n tend vers $+\infty$ dans les cas suivants :

$$1. \ u_n = n + \ln(n)$$

4.
$$u_n = \frac{n^2 + 2^{-n} + 3^n}{n! + n^{12} + 1}$$

2.
$$u_n = \frac{1}{n} + \frac{1}{\ln(n)}$$

1.
$$u_n = n + \ln(n)$$
 4. $u_n = \frac{1}{n! + n^{12} + 1}$
2. $u_n = \frac{1}{n} + \frac{1}{\ln(n)}$ 5. $u_n = \sin\left(\frac{1}{n^2}\right) - \ln\left(1 + \frac{1}{n^3}\right)$
3. $u_n = \frac{n^2 + n\sqrt{n}}{n + (-1)^n}$ 6. $u_n = \sin\left(\frac{1}{n^2}\right) - \ln\left(1 + \frac{1}{n^2}\right)$

3.
$$u_n = \frac{n^2 + n\sqrt{n}}{n + (-1)^n}$$

$$3. \ u_n = \sin\left(\frac{1}{n^2}\right) - \ln\left(1 + \frac{1}{n^2}\right)$$

5

Indication: le plus simple est d'utiliser les développements limités pour les deux dernières suites.

Exercice 9 (C3-C10) \square On considère la suite $(u_n)_{n\geqslant 1}$ définie par :

$$\forall n \in \mathbb{N}^*, \qquad u_n = \sum_{k=0}^n \frac{1}{n+k}$$

- 1. Étudier les variations de la suite $(u_n)_{n\geqslant 1}$.
- 2. (a) Montrer que pour tout $k \in \mathbb{N}^*$, on a $\frac{1}{k} \geqslant \ln(k+1) \ln(k)$.
 - (b) En déduire que pour tout $n \in \mathbb{N}^*$, on a $u_n \geqslant \ln(2)$. Conclure quant à la convergence de la suite.
- 3. En reconnaissant une somme de Riemann, donner la limite de $(u_n)_{n\geqslant 1}$.

Exercice 10 (C10) \Box Étudier la convergence des suites de termes généraux suivants :

1.
$$a_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{n+k}$$

3.
$$c_n = \prod_{k=1}^n \left(1 + \frac{k}{n}\right)^{1/n}$$

2.
$$b_n(x) = \sum_{k=1}^n \frac{n}{n^2 + k^2 x^2}$$
 (où $x \in \mathbb{R}^*$)

4.
$$d_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{1}{\sqrt{k+n}}$$

Exercice 11 (C6-C9) \square Pour tout entier naturel n, on pose :

$$u_n = \sum_{k=0}^{n} \frac{1}{\binom{n}{k}}$$

1. Montrer que :

$$\forall n \in \mathbb{N} \setminus \{0, 1, 2, 3\}, \ \forall k \in [2, n-2], \qquad \binom{n}{k} \geqslant \frac{n(n-1)}{2}$$

- 2. En déduire un encadrement de u_n pour tout entier n supérieur ou égal à 4.
- 3. Conclure quant à la limite de u_n quand n tend vers $+\infty$.
- 4. Montrer que $u_n 2 \sim 2_{n \to +\infty} \frac{2}{n}$

Exercice 12 (C3-C6) $\ \ \, \ \, \ \,$ Pour tout $n\in\mathbb{N},$ on pose :

$$u_n = \int_0^1 \frac{1}{1+x^n} \, \mathrm{d}x$$

- 1. Calculer u_1 et u_2 .
- 2. (a) Étudier le sens de variations de $(u_n)_{n\in\mathbb{N}}$.
 - (b) Justifier que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.
- 3. Montrer que:

$$\forall n \in \mathbb{N}, \qquad 0 \leqslant 1 - u_n \leqslant \frac{1}{n+1}$$

En déduire la limite de la suite.

4. (a) Montrer que:

$$\forall n \in \mathbb{N}^*, \qquad 1 - u_n = \frac{\ln 2}{n} - \frac{1}{n} \int_0^1 \ln(1 + x^n) \, \mathrm{d}x$$

6

- (b) Montrer que, pour tout $n \in \mathbb{N}^*$, on a $0 \leqslant \int_0^1 \ln(1+x^n) dx \leqslant \frac{1}{n+1}$.
- (c) En déduire un équivalent simple de $1-u_n$ quand n tend vers $+\infty$.

Exercice 13 (oral Agro-Véto 2017, C7-C8-C11) \square Pour tout entier naturel n non nul, on pose $s_n = \sum_{k=0}^{n} \frac{(-1)^k}{k}$.

- 1. Démontrer que les suites $(s_{2n})_{n\in\mathbb{N}^*}$ et $(s_{2n+1})_{n\in\mathbb{N}}$ sont convergentes de même limite.
- 2. En déduire que la suite $(s_n)_{n\in\mathbb{N}^*}$ est convergente.
- 3. (a) Écrire en langage python une fonction somme prenant en paramètre un entier naturel n non nul et renvoyant la somme s_n .
 - (b) À l'aide du module matplotlib.pyplot, tracer une représentation de la suite $(s_n)_{n\in\mathbb{N}^*}$.
- 4. Soit $n \in \mathbb{N}^*$.
 - (a) Montrer que:

$$\forall x \in]-1, +\infty[, \qquad \frac{1}{1+x} = \sum_{k=0}^{n-1} (-1)^k x^k + (-1)^n \frac{x^n}{1+x}$$

(b) En déduire alors que :

$$\ln(2) = -s_n + (-1)^n \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x$$

(c) Démontrer les inégalités :

$$0 \leqslant \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x \leqslant \frac{1}{n+1}$$

5. Déterminer la limite de la suite $(s_n)_{n\in\mathbb{N}^*}$.

COMMENTAIRE

Les exercices suivants sont des études de suites définies par récurrence par une expression du type $u_{n+1} = f(u_n)$. La méthode générale d'étude n'est pas au programme, mais elle repose sur les étapes suivantes :

- 1. Recherche des points fixes : On résout l'équation x=f(x) pour connaître les limites finies éventuelles de la suite.
- 2. On étudie les variations de la fonction f.
- 3. On étudie le signe de la fonction g(x) = f(x) x $(g \le 0)$ indique une suite décroissante et $g \ge 0$ indique une suite croissante car $g(u_n) = f(u_n) u_n = u_{n+1} u_n$.
- 4. On met toutes ces informations ensemble pour conclure, en tenant compte de la valeur de u_0 .

Exercice 14 (C3-C6) \mathfrak{S} Soit $a \in \mathbb{R}$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par :

$$u_0 = a \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{3}u_n^2 + \frac{2}{3}$$

- 1. Démontrer que $u_n > 0$ pour tout $n \in \mathbb{N}^*$.
- 2. On définit la fonction f par :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{1}{3}x^2 + \frac{2}{3}$$

- (a) Étudier les variations de f.
- (b) Étudier le signe de g(x) = f(x) x en fonction de x.
- 3. On suppose que $u_1 > 2$.
 - (a) Montrer que $u_n > 2$ pour tout $n \in \mathbb{N}^*$.
 - (b) En déduire que (u_n) est croissante à partir du rang 1.
 - (c) Démontrer que $\lim_{n\to+\infty} u_n = +\infty$.

- 4. On suppose que $1 < u_1 < 2$.
 - (a) Montrer que (u_n) est décroissante à partir du rang 1.
 - (b) Démontrer que $\lim_{n \to +\infty} u_n = 1$.
- 5. On suppose que $0 < u_1 < 1$.
 - (a) Montrer que (u_n) est croissante à partir du rang 1.
- (b) Démontrer que $\lim_{n \to +\infty} u_n = 1$.
- 6. Que se passe-t-il si $u_1 = 1$ et si $u_1 = 2$?

Exercice 15 (C1-C3-C6) $\ \ \, \ \, \ \,$ On considère la suite définie par $u_0 \in]0,1[$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \sin(u_n)$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, on a $u_n \in]0,1]$.
- 2. Montrer que :

$$\forall x \in \mathbb{R}_+, \quad \sin(x) \leqslant x$$

En déduire les variations de la suite $(u_n)_{n\in\mathbb{N}}$.

- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge puis établir que sa limite est nulle.
- 4. Montrer que $\lim_{n\to +\infty} \left(\frac{1}{u_{n+1}^2} \frac{1}{u_n^2}\right) = \frac{1}{3}$ en utilisant un développement limité.

Exercice 16 (C6) \Box On considère les fonctions :

$$f: x \longmapsto 1 + \frac{1}{2}\arctan(x) - x$$
 et $g: x \longmapsto 1 + \frac{1}{2}\arctan(x)$

- 1. Déterminer le domaine de définition de f. Montrer que l'équation g(x) = x admet une unique solution que l'on notera a, et que $a \in [0, \sqrt{3}]$.
- 2. On définit maintenant la suite $(u_n)_{n\in\mathbb{N}}$ par $u_{n+1}=g(u_n)$ pour tout $n\in\mathbb{N}$ (le premier terme u_0 est un nombre réel quelconque).
 - (a) Déterminer les limites finies éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (b) Montrer que:

$$\forall n \in \mathbb{N}, \qquad |u_{n+1} - a| \leqslant \frac{1}{2}|u_n - a|$$

(c) En déduire que $|u_n - a| \le \frac{1}{2^n} |u_0 - a|$ pour tout entier naturel n. Que peut-on dire de la convergence de $(u_n)_{n \in \mathbb{N}}$?

Exercice 17 (C1-C3-C6-C9) \square Soit n un entier naturel supérieur ou égal à 3. On considère l'équation :

$$x^n + x^2 + 2x - 1 = 0 (E_n)$$

- 1. Montrer que l'équation (E_n) admet une unique solution u_n dans \mathbb{R}_+ .
- 2. Montrer que $u_n \in \left[0, \frac{1}{2}\right]$.
- 3. (a) Écrire une fonction balayage qui prend en entrée un entier $n \ge 3$ et un nombre eps strictement positif et qui renvoie un encadrement de u_n à eps près à l'aide d'un procédé de balayage.
 - (b) On rappelle le principe de dichotomie. Si une fonction f s'annule une unique fois sur un intervalle [a,b], alors on construit la suite de segments $([a_n,b_n])_{n\in\mathbb{N}}$ par $a_0=a$ et $b_0=b$ et, pour tout $n\in\mathbb{N}$, par :

$$a_{n+1} = \begin{cases} a_n & \text{si } f(a_n)f(c_n) < 0 \\ c_n & \text{sinon} \end{cases}$$
 et $b_{n+1} = \begin{cases} c_n & \text{si } f(a_n)f(c_n) < 0 \\ b_n & \text{sinon} \end{cases}$

où c_n est le milieu du segment [a,b]. Écrire une fonction dichotomie prenant un nombre strictement positif eps et renvoyant un encadrement de u_n à eps près à l'aide de ce procédé.

- 4. Étudier les variations de la suite $(u_n)_{n\geqslant 3}$.
- 5. Montrer que $(u_n)_{n\geqslant 3}$ est convergente et calculer sa limite.
- 6. Pour tout entier naturel n supérieur ou égal à 3, on pose $v_n = u_n \sqrt{2} + 1$.
 - (a) Montrer que :

$$\forall n \in \mathbb{N} \setminus \{0, 1, 2\}, \qquad v_n = \frac{-u_n^n}{u_n + \sqrt{2} + 1}$$

8

En déduire que $\lim_{n\to+\infty} nv_n = 0$.

(b) Montrer que $v_n \underset{n \to +\infty}{\sim} -\frac{(\sqrt{2}-1)^n}{2\sqrt{2}}$.