Devoir maison 2

Exercice 1.

Les questions 1., 2. et 3. sont indépendantes.

1. Déterminer la nature des séries suivantes et calculer éventuellement leur somme :

(a)
$$\sum_{n>1} \left(1 + \frac{1}{n}\right)^n$$

(b)
$$\sum_{n\geq 0} \frac{2n-1}{5^n}$$

(c)
$$\sum_{n \ge 1} \ln \left(\frac{2n+1}{2n-1} \right)$$

- 2. Montrer que la série $\sum_{n\geqslant 0}\frac{1}{n+2^{2n}}$ est convergente de somme inférieure ou égale à $\frac{4}{3}$.
- 3. Pour tout entier naturel n non nul, on pose $u_n = \frac{\sqrt{n^2 + 1} n}{n}$. On s'intéresse dans cette question à la nature de la série $\sum_{n \ge 1} u_n$.
 - (a) Montrer que $u_n \underset{n \to +\infty}{\sim} \frac{1}{2n^2}$.
 - (b) Conclure.

Exercice 2.

L'objectif de cet exercice est de justifier la convergence de la série $\sum_{n\geqslant 0} \frac{(-1)^n}{n+\alpha}$ pour tout

 $\alpha \in [1, +\infty[$ et de donner une expression de la somme de cette série à l'aide d'une intégrale.

1. À l'aide de Python, proposer un programme qui permet, pour la valeur $\alpha=2$, de vérifier informatiquement que la série mentionnée ci-dessus est convergente. Proposer une valeur approchée de la somme de la série.

Soit $\alpha \in [1, +\infty[$. Pour tout entier naturel n, on pose :

$$S_n = \sum_{k=0}^n \frac{(-1)^k}{k+\alpha}, \quad u_n = S_{2n} \quad \text{et} \quad v_n = S_{2n+1}$$

- 2. (a) Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes.
 - (b) Conclure que la série $\sum_{n\geqslant 0} \frac{(-1)^n}{n+\alpha}$ converge.
- 3. Cette série est-elle absolument convergente? Justifier.
- 4. Dans cette question, nous allons obtenir une forme intégrale de la somme $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+\alpha}$.
 - (a) Pour tout entier naturel k, calculer $\int_0^1 t^{k+\alpha-1} dt$.
 - (b) En déduire que :

$$\forall n \in \mathbb{N}, \qquad \mathbf{S}_n = \int_0^1 \frac{t^{\alpha - 1} - (-1)^{n+1} t^{n+\alpha}}{1 + t} \, \mathrm{d}t$$

(c) Montrer que:

$$\forall n \in \mathbb{N}, \qquad 0 \leqslant \int_0^1 \frac{t^{n+\alpha}}{1+t} \, \mathrm{d}t \leqslant \frac{1}{n+\alpha+1}$$

puis conclure que :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+\alpha} = \int_0^1 \frac{t^{\alpha-1}}{1+t} \, \mathrm{d}t$$

5. Calculer la somme de la série évoquée à la question 1.