Chapitre 2 Probabilités

1 Union ou intersection infinie d'évènements

Définition 1.0.1. Soit E un ensemble.

Soit $(A_k)_{k\in\mathbb{N}}$ une famille infinie de parties de E. On pose :

$$\bigcup_{k=0}^{+\infty}A_k=\{x\in E,\ \exists k\in\mathbb{N},\ x\in A_k\}$$

$$\bigcap_{k=0}^{+\infty} A_k = \{ x \in E, \ \forall k \in \mathbb{N}, \ x \in A_k \}$$

Exemple 1.0.1. 1. Déterminer $\bigcap_{k=1}^{+\infty} [0, k]$.

2. Déterminer
$$\bigcup_{k=0}^{+\infty} [k, k+1]$$
.

2 Notion de tribu

Définition 2.0.1. Une **tribu** sur Ω est une famille \mathcal{T} de parties de Ω telle que :

- 1. $\Omega \in \mathcal{T}$
- 2. Si $A \in \mathcal{T}$ alors $\bar{A} \in \mathcal{T}$
- 3. Si pour tout $n \in \mathbb{N}^{\star}$, $A_n \in \mathcal{T}$ alors $\bigcup_{k=1}^{\infty} A_k \in \mathcal{T}$

Tout élément de la tribu \mathcal{T} est appelé un **évènement**.

 (Ω, \mathcal{T}) est un espace probabilisable

Exemple 2.0.1. On considère $\Omega = \{1, 2, 3, 4, 5, 6\}.$

1. Montrer que $\mathcal{P}(\Omega)$ est une tribu sur Ω .

2. On se place dans la situation où le joueur gagne s'il obtient un 6. Montrer que $\mathcal{T} = \{\emptyset, \{6\}, \{1, 2, 3, 4, 5\}, \Omega\}$ est une tribu sur Ω .

3. Créer une autre tribu sur Ω .

Remarque 2.0.1. Si Ω est un ensemble fini, on prend traditionnellement $\mathcal{T} = \mathcal{P}(\Omega)$.

3 Probabilité sur une tribu

3.1 Définition de probabilité

Définition 3.1.1. Soit (Ω, \mathcal{T}) un espace probabilisable. Deux évènements $(A, B) \in \mathcal{T}^2$ sont dits incompatibles ou disjoints si $A \cap B = \emptyset$.

Définition 3.1.2. Soit (Ω, \mathcal{T}) un espace probabilisable. Une application $P : \mathcal{T} \to \mathbb{R}_+$ est appelée probabilité sur (Ω, \mathcal{T}) si elle vérifie les propriétés suivantes :

- $P(\Omega) = 1$
- axiome de σ -additivité : pour tout suite d'événements $(A_n)_{n\in\mathbb{N}}\in\mathcal{T}$ deux à deux incompatibles, la série $\sum_{n\geqslant 0} P(A_n)$ converge et :

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n=0}^{+\infty}P(A_n)$$

On dit alors que le triplet (Ω, \mathcal{T}, P) est un espace probabilisé.

Exemple 3.1.1. On reprend l'univers et la tribu de l'exemple 2.0.1 question 2. Donner une probabilité sur (Ω, \mathcal{A}) .

Remarque 3.1.1. La propriété de σ -additivité de P est valable également pour une suite *finie* d'événements deux à deux incompatibles. En effet, étant donnés $n \in \mathbb{N}^*$ et (A_1, \ldots, A_n) une suite d'événements deux à deux incompatibles, il suffit de choisir $A_k = \emptyset$ pour tout entier $k \geqslant n+1$ et d'appliquer la définition.

3.2 Propriétés des probabilités

Proposition 3.2.1. Soit (Ω, \mathcal{T}, P) un espace probabilisé. Pour tout $(A, B) \in \mathcal{T}^2$, on a :

- 1. $P(\overline{A}) = 1 P(A)$ et en particulier $P(\emptyset) = 0$
- 2. $P(A) \in [0,1]$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 4. $P(A \setminus B) = P(A) P(A \cap B)$
- 5. si $A \subset B$, alors $P(A) \leq P(B)$ (croissance de P).

Proposition 3.2.2. On considère un univers de la forme $\Omega = \{\omega_i \mid i \in I\}$ où I est un sousensemble de \mathbb{N} (fini ou infini). Soit $(p_i)_{i \in I}$ une suite de nombres réels positifs ou nuls. Alors :

- il existe une probabilité P sur $(\Omega, \mathcal{P}(\Omega))$ tel que pour tout $i \in I$, on ait $P(\{\omega_i\}) = p_i$ si et seulement si la série $\sum_{i \in I} p_i$ est convergente de somme égale à 1.
- dans ce cas, il y a unicité de la probabilité qui vérifie la propriété précédente.

Exemple 3.2.1. Soit $(a_n)_{n\geqslant 1}$ une suite de nombres réels telle que :

$$\forall n \in \mathbb{N}^*, \qquad 2a_{n+2} - 5a_{n+1} + 2a_n = 0$$

1. Déterminer le terme général de la suite $(a_n)_{n\in\mathbb{N}}$ afin qu'il existe une probabilité P sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ telle que pour tout $n\in\mathbb{N}^*$, on ait $P(\{n\})=a_n$.

2. On considère les événements $A: \ll$ on obtient un nombre supérieur ou égal à $5 \gg$ et $B: \ll$ on obtient un multiple de $2 \gg$. Déterminer P(A) et P(B).

Proposition 3.2.3 (Théorème de la limite croissante/décroissante).

• Si $(A_n)_{n\in\mathbb{N}}$ est une suite croissante d'évènements, c'est-à-dire : $\forall n\in\mathbb{N},\ A_n\subset A_{n+1},\ alors$:

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to+\infty}P(A_n).$$

• Si $(A_n)_{n\in\mathbb{N}}$ est une suite décroissante d'évènements, c'est-à-dire : $\forall n\in\mathbb{N},\ A_{n+1}\subset A_n$, alors :

$$P\left(\bigcap_{n\in\mathbb{N}}A_n\right)=\lim_{n\to+\infty}P(A_n).$$

3.3 Évènement négligeable et presque-sûr

Remarque 3.3.1. On sait que les événements \emptyset et Ω sont appelés les événements impossible et certain respectivement. Ils sont tels que $P(\emptyset) = 0$ et $P(\Omega) = 1$. Lorsque l'univers est infini, il est possible qu'un événement A soit tel que P(A) = 0 mais sans avoir $A = \emptyset$ (de même on pourrait avoir P(A) = 1 sans avoir $A = \Omega$).

Définition 3.3.1. Soit (Ω, \mathcal{T}, P) un espace probabilisé.

Un évènement $A \in \mathcal{T}$ est dit

- presque-sûr si P(A) = 1
- négligeable si P(A) = 0

Exemple 3.3.1. On répète une infinité de fois un lancer de pièce équilibrée.
1. Que peut-on dire de l'évènement "Obtenir au moins un pile" ?
2. Que peut-on dire de l'évènement "Obtenir uniquement des piles" ?

4 Formule des probabilités totales

Définition 4.0.1. Une famille $(A_i)_{i\in I} \in \mathcal{T}^I$, où I est un sous-ensemble (fini ou non) de \mathbb{N} , est un **système complet d'évènements** (ou partition de l'univers) si elle vérifie les deux conditions suivantes :

- 1. les évènements sont deux à deux incompatibles : $\forall (i,j) \in I, i \neq j, A_i \cap A_j = \emptyset$,
- 2. les évènements recouvrent $\Omega: \bigcup_{i \in I} A_i = \Omega$.

Définition 4.0.2. Une famille $(A_i)_{i\in I} \in \mathcal{T}^I$, où I est un sous-ensemble (fini ou non) de \mathbb{N} , est un **système quasi-complet d'évènements** (ou partition de l'univers) si elle vérifie les deux conditions suivantes :

- 1. les évènements sont deux à deux incompatibles : $\forall (i,j) \in I, i \neq j, A_i \cap A_j = \emptyset$,
- 2. la somme de la série $\sum_{n\geqslant 0} P(A_n)$ est égale à 1.

Théorème 4.0.1 (Formule des probabilités totales). Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{T}^{\mathbb{N}}$ un système complet (ou quasi-complet) d'événements. Pour tout $B\in\mathcal{T}$, la série $\sum_{n\geqslant 0} P(A_n\cap B)$ est convergente et :

$$P(B) = \sum_{n=0}^{+\infty} P(A_n \cap B).$$

Exemple 4.0.1. On lance indéfiniment un dé à six faces (équilibré) et on note la suite des résultats obtenus. L'univers est donc $\Omega = [\![1,6]\!]^{\mathbb{N}}$ (l'ensemble des suites d'éléments de l'ensemble $[\![1,6]\!]$). Par exemple, l'élément $(1,4,5,3,\ldots)$ de Ω signifie que le premier lancer a donné un as, le deuxième un 4, le troisième un 5, la quatrième un 3, etc.

Pour tout entier naturel n non nul, on considère l'événement B_n : « on obtient la face numérotée 1 pour la première fois au $n^{\text{ème}}$ lancer » et l'événement U_n : « le $n^{\text{ème}}$ lancer a donné la face numérotée 1 ».

1. Pour tout $n \in \mathbb{N}^*$, calculer la probabilité de l'événement B_n . Vérifier que l'on a $\sum_{n=1}^{+\infty} P(B_n) = 1$.

2.	Calculer la probabilité de l'événement	E:	≪ la	première	fois	qu'un	1 es	t sorti,	il es	t suivi	d'un
	autre 1 »										

3. On considère le jeu suivant. On lance un dé jusqu'à obtenir un 1. Si n lancers ont été nécessaires pour l'obtenir, on lance une pièce équilibrée n fois. On gagne si, lors de ces n lancers de pièce, au moins un pile est obtenu. Soit alors l'événement $F: \ll$ on gagne à ce jeu \gg . Déterminer la probabilité de F.

5 Conditionnement et indépendance

5.1 Conditionnement

Proposition 5.1.1. Soient (Ω, \mathcal{T}, P) un espace probabilisé et $A \in \mathcal{T}$ tel que $P(A) \neq 0$. Alors l'application :

$$P_A: \left\{ \begin{array}{ccc} \mathcal{T} & \longrightarrow & \mathbb{R}_+ \\ B & \longmapsto & P_A(B) = \frac{P(A \cap B)}{P(A)} \end{array} \right.$$

est une probabilité, appelée probabilité conditionnelle sachant l'événement A.

Remarque 5.1.1.

 \bullet La probabilité \mathcal{P}_A vérifie donc toutes les propriétés de la proposition précédente :

$$\forall B \in \mathcal{T}, \qquad P_A(\overline{B}) = 1 - P_A(B), \dots$$

• La probabilité conditionnelle $P_A(B)$ se note aussi P(B|A).

Exemple 5.1.1. On dispose d'un jeu de 32 cartes auxquelles on enlève 5 cartes. On distribue ensuite 5 nouvelles cartes à un joueur J. Sachant que parmi les cartes enlevées il y a exactement un roi, quelle est la probabilité que le joueur J ait au moins un roi?

Théorème 5.1.2 (Formule des probabilités composées).

Soient A et B deux évènements :

$$P(A \cap B) = P(A)P_A(B)$$

avec la convention $P(A) = 0 \Longrightarrow P(A)P_A(B) = 0$.

Soient A_1, \ldots, A_n des évènements, la formule des probabilités composées généralisée donne :

$$P(A_1 \cap \ldots \cap A_n) = P(A_1)P_{A_1}(A_2)P_{A_1 \cap A_2}(A_3) \ldots P_{A_1 \cap \ldots \cap A_{n-1}}(A_n)$$

Exemple 5.1.2. Un singe a à sa disposition 5 bananes et 9 pommes. On suppose que ce singe aime autant les bananes que les pommes et que, lorsqu'il a faim, il choisit un fruit au hasard. Quelle est la probabilité qu'il mange d'abord 2 bananes puis une pomme puis une banane?

Théorème 5.1.3 (Formule de Bayes). Soient (Ω, \mathcal{T}, P) un espace probabilisé et $(A, B) \in \mathcal{T}^2$ deux événements de probabilités non nulles. Alors :

$$\mathrm{P}_B(A) = rac{\mathrm{P}(A)\,\mathrm{P}_A(B)}{\mathrm{P}(B)}$$

Exemple 5.1.3. On suppose que 10% d'une population est atteinte d'une maladie. On dispose d'un test de dépistage pour tester cette maladie. Si l'individu choisi est malade, le test est positif dans 99% des cas. Si l'individu est sain, le test est positif dans 3% des cas (ce sont des *faux positifs*). Si le test est positif, quelle est la probabilité que la personne soit réellement malade?

5.2 Indépendance de deux évènements

Définition 5.2.1. Soient (Ω, \mathcal{T}, P) un espace probabilisé et A, B deux événements (c'est-à-dire $(A, B) \in \mathcal{T}^2$). On dit que A et B sont des événements indépendants si :

$$P(A \cap B) = P(A) P(B).$$

Remarque 5.2.1.

- 1. Si $P(A) \neq 0$, cela revient à dire que $P_A(B) = P(B)$ (la réalisation de B ne dépend pas de celle de A).
- 2. Attention : cette notion n'a rien à voir avec celle d'incompatibilité $(A \cap B = \emptyset)$.

Exemple 5.2.1. On tire une carte dans un jeu de 32 cartes. On note D l'événement « La carte tirée est une dame », C l'événement « La carte tirée est un cœur » et F l'événement « La carte tirée est une figure ».

1. Les événements D et C sont-ils indépendants?

2. Les événements D et F sont-ils indépendants?

5.3 Indépendance de n évènements

Définition 5.3.1. Soit (Ω, \mathcal{T}, P) un espace probabilisé et $(A_1, \ldots, A_n) \in \mathcal{T}^n$ une famille d'événements.

On dit que (A_1, \ldots, A_n) est une famille d'événements deux à deux indépendants si :

$$orall (i,j) \in \llbracket 1,n
rbracket^2, \ i
eq j, \ P\left(A_i \cap A_j
ight) = P(A_i)P(A_j).$$

Définition 5.3.2. Soit (Ω, \mathcal{T}, P) un espace probabilisé et $(A_1, \ldots, A_n) \in \mathcal{T}^n$ une famille d'événements.

On dit que (A_1, \ldots, A_n) est une famille d'événements mutuellement indépendants si :

$$orall J \subset \llbracket 1, n
rbracket, \qquad oldsymbol{P} \left(igcap_{j \in J} oldsymbol{A_j}
ight) = \prod_{j \in J} oldsymbol{P}(oldsymbol{A_j})$$

Remarque 5.3.1. On remarque en particulier que des évènements mutuellement indépendants sont deux à deux indépendants.

Exemple 5.3.1. Soient A, B et C trois évènements.

1. Lister les propriétés à vérifier pour que (A,B,C) soit une famille d'évènements deux à deux indépendants.

2. Lister les propriétés à vérifier pour que (A,B,C) soit une famille d'évènements mutuellement indépendants.

5.4 Indépendance d'une suite d'évènements

Définition 5.4.1. Soit (Ω, \mathcal{T}, P) un espace probabilisé et $(A_n)_{n \in \mathbb{N}} \in \mathcal{T}^{\mathbb{N}}$ une suite d'événements. On dit que $(A_n)_{n \in \mathbb{N}}$ est une suite d'événements indépendants si :

 $\forall J \subset \mathbb{N}, \ J \text{ de cardinal fini, la famille } (A_i)_{i \in J} \text{ est mutuellement indépendante.}$

Exemple 5.4.1. On lance une infinité de fois une pièce de monnaie (équilibrée ou non). Pour tout $n \in \mathbb{N}^*$, on considère l'événement $F_n : \ll$ on obtient face au $n^{\text{ème}}$ lancer \gg . Alors $(F_n)_{n\geqslant 1}$ est une suite d'événements mutuellement indépendants.