Chapitre 5 Espaces vectoriels

Dans tout ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Espaces vectoriels

Définition 1.0.1. Un espace E est muni de la loi + , c'est-à-dire d'une application :

$$+: E \times E \to E$$

 $(x,y) \mapsto x + y$

et de la loi . , c'est-à-dire d'une application :

$$.: \mathbb{K} \times E \to E$$

 $(\lambda, x) \mapsto \lambda.x$

L'espace ainsi constitué (E, +, .) est un espace vectoriel si

- 1. (a) la loi + est interne : $\forall (x,y) \in E^2, x+y \in E$
 - (b) la loi + est associative : $\forall (x, y, z) \in E^3, (x + y) + z = x + (y + z)$
 - (c) la loi + possède un élément neutre noté $0_E: \forall x \in E, \ x + 0_E = 0_E + x = x$
 - (d) tout élément de E possède un symétrique : $\forall x \in E, \ \exists y \in E, \ x+y=0_E$ et on le note -x.
 - (e) la loi + est commutative : $\forall (x,y) \in E^2, x+y=y+x$.
- 2. . est une loi externe :

$$\forall \lambda \in \mathbb{K}, \ \forall x \in E, \ \lambda.x \in E$$

- 3. (a) $\forall x \in E, \ 1.x = x$
 - (b) $\forall (x,y) \in E^2, \ \forall \lambda \in \mathbb{K}, \ \lambda.(x+y) = \lambda.x + \lambda.y$
 - (c) $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall x \in E$, $(\lambda + \mu).x = \lambda.x + \mu.x$
 - (d) $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall x \in E$, $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$

Exemple 1.0.1. Montrer que $(\mathcal{M}_2(\mathbb{R}), +, .)$ est un \mathbb{R} -espace vectoriel.

Proposition 1.0.1. Soit E un \mathbb{K} -espace vectoriel. On a :

- 1. $\forall x \in E, \ 0.x = O_E$
- 2. $\forall a \in \mathbb{K}, \ a.O_E = O_E$
- 3. $\forall (a,x) \in \mathbb{K} \times E, \ a.x = O_E \iff a = 0 \text{ ou } x = O_E$

Exemple 1.0.2. \mathbb{K}^n est un \mathbb{K} -espace vectoriel pour les lois suivantes :

si (x_1,\ldots,x_n) et (y_1,\ldots,y_n) sont des éléments de \mathbb{K}^n et si $\lambda\in\mathbb{K}$, on pose :

- $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$
- $\lambda.(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n).$

Exemple 1.0.3. $\mathbb{K}[X]$ est un \mathbb{K} -espace vectoriel pour les lois suivantes : l'addition dans $\mathbb{K}[X]$ est l'addition usuelle des polynômes, et la loi externe est le produit du polynôme par un scalaire.

Exemple 1.0.4. $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -espace vectoriel pour les lois suivantes : l'addition dans $\mathcal{M}_{n,p}(\mathbb{K})$ est l'addition usuelle des polynômes, et la loi externe est le produit d'une matrice par un scalaire.

Exemple 1.0.5. $\mathcal{F}(I, \mathbb{K})$, l'ensemble des fonctions de I dans \mathbb{K} , est un \mathbb{K} -espace vectoriel pour les lois suivantes :

si f et g sont des applications de l'ensemble I dans le corps \mathbb{K} et si $\lambda \in \mathbb{K}$, on pose

- $\forall x \in I, (f+g)(x) = f(x) + g(x)$
- $\forall x \in I, \ (\lambda.f)(x) = \lambda \times f(x).$

2 Sous-espaces vectoriels.

Dans toute la suite du chapitre, E désigne un \mathbb{K} -espace vectoriel.

Définition 2.0.1. Soit E un \mathbb{K} -espace vectoriel et $(u_1, \ldots, u_n) \in E^n$.

On dit que $v \in E$ est une combinaison linéaire de (u_1, \ldots, u_n) si et seulement si :

$$\exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \ v = \lambda_1 u_1 + \dots + \lambda_n u_n$$

Exemple 2.0.1. 1. Montrer que $P = X + 2 \in \mathbb{R}[X]$ est une combinaison linéaire de $P_0 = 1$ et $P_1 = X$.

2. Déterminer l'ensemble des combinaisons linéaires de $u = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ et $v = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$.

Définition 2.0.2. Soit F une partie de E, un \mathbb{K} -espace vectoriel.

On dit que F est un sous espace vectoriel de E si et seulement si (F, +, .) est un K-espace vectoriel.

Théorème 2.0.1. F est un sous-espace vectoriel de E si et seulement si :

- 1. $F \subset E$.
- 2. F est non vide : en particulier, $0_E \in F$,
- 3. F est stable par combinaison linéaire :

$$\forall (u, v) \in F^2, \forall (\lambda, \mu) \in \mathbb{K}^2, \ \lambda.u + \mu.v \in F.$$

3

Méthode 2.1. Pour montrer qu'un espace F est un sous-espace vectoriel de E, on suit pas à pas les trois étapes du théorème 2.0.1:

- 1. On montre que $F \subset E$.
- 2. On montre que $0_E \in F$:
 - (a) On se demande ce qui caractérise l'appartenance à F.
 - (b) On montre que 0_E vérifie cette condition.
- 3. On montre que F est stable par combinaison linéaire : Soient u et $v \in F$, soient λ et $\mu \in \mathbb{K}$, on veut montrer que $\lambda.u + \mu.v \in F$.
 - (a) On écrit explicitement $\lambda . u + \mu . v$.
 - (b) On se demande ce qui caractérise l'appartenance à F.
 - (c) On montre que $\lambda . u + \mu . v$ vérifie cette condition.

Exemple 2.0.2. Montrer que $\{(x,y,z) \in \mathbb{R}^3, \ x+y=z\}$ est un sous-espace vectoriel de \mathbb{R}^3 .

Proposition 2.0.2. Soit $n \in \mathbb{N}$. On note $\mathbb{K}_n[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} et de degré inférieur ou égal à n. Cet ensemble est un sous-espace vectoriel de $\mathbb{K}[X]$.

 $D\'{e}monstration.$

Proposition 2.0.3. Une intersection de sous-espaces vectoriels de E est un sous-espace vectoriel de E

 $D\acute{e}monstration.$ On pose F et G deux sous-espaces vectoriels de E. Montrons que $F\cap G$ est un sous-espace vectoriel de E.

3 Familles de vecteurs

3.1 Familles libres

Définition 3.1.1. Soit (u_1, \ldots, u_n) une famille de vecteurs de E un \mathbb{K} -espace vectoriel. On dit qu'elle est **libre** si et seulement si :

$$\forall (\lambda_1,\ldots,\lambda_n) \in \mathbb{K}^n, \ \lambda_1 u_1 + \cdots + \lambda_n u_n = 0_E \Rightarrow \lambda_1 = \cdots = \lambda_n = 0.$$

Définition 3.1.2. Une famille qui n'est pas libre est liée.

Il existe alors $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ non tous nuls tels que

$$\lambda_1 u_1 + \dots + \lambda_n u_n = 0_E.$$

Cette relation est une relation de dépendance linéaire entre u_1, \ldots, u_n .

Méthode 3.1. Pour déterminer si une famille (u_1, \ldots, u_n) est libre :

- Si n = 1 : (u) avec $u \neq 0_E$ forme une famille libre.
- Si $n=2:(u_1,u_2)$ est libre si et seulement si u_1 et u_2 ne sont pas colinéaires.
- Sinon, on considère $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$ tels que $\lambda_1u_1+\ldots+\lambda_nu_n=0_E$. La famille est libre si et seulement si $\lambda_1=\cdots=\lambda_n=0$.

Exemple 3.1.1. 1. La famille
$$(u_1, u_2, u_3)$$
 avec $u_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$ et $u_3 = \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$ est-elle libre?

2. La famille $P_1 = X^2 + X + 1$, $P_2 = X^2 - X + 1$ et $P_3 = X + 2$ de $\mathbb{R}_2[X]$ est-elle libre?

Proposition 3.1.1. Soit E un \mathbb{K} -espace vectoriel.

- 1. Toute famille de E contenue dans une famille libre de E est libre.
- 2. Toute famille contenant une famille liée de E est liée.

Théorème 3.1.2. Si une famille est liée, alors un de ses éléments est combinaison linéaire des autres.

Exemple 3.1.2. On pose $e_1 = \begin{pmatrix} 1 & 2 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 & 1 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 0 & 1 \end{pmatrix}$. Montrer que la famille (e_1, e_2, e_3) est liée en écrivant l'un de ses vecteurs comme combinaison linéaire des deux autres.

3.2 Familles génératrices

3.2.1 Définition et propriétés

Définition 3.2.1. Soit (u_1, \ldots, u_n) une famille d'éléments de E un \mathbb{K} -espace vectoriel. On dit que cette **famille** est **génératrice de** E si et seulement si :

$$\forall w \in E, \ \exists (\lambda_1, \dots, \lambda_n) \in K^n, \ w = \lambda_1 u_1 + \dots + \lambda_n u_n$$

c'est-à-dire si tout élément de E est combinaison linéaire de u_1, \ldots, u_n .

Méthode 3.2. Pour déterminer si une famille (u_1, \ldots, u_n) est génératrice :

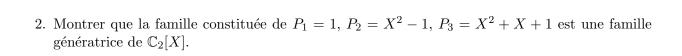
On considère
$$w \in E$$
 et on cherche $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que

$$w = \lambda_1 u_1 + \dots + \lambda_n u_n.$$

On écrit le système correspondant à cette équation et on essaye de l'inverser, c'est-à-dire d'exprimer $\lambda_1, \ldots, \lambda_n$ en fonction des coordonnées de w.

- Si on y parvient, alors la famille est génératrice et on a déterminé une combinaison linéaire de u_1, \ldots, u_n qui donne w.
- Si le système n'est pas inversible, alors la famille n'est pas génératrice.

Exemple 3.2.1. 1. Montrer que la famille $((1 \ 0), (1 \ 1))$ est une famille génératrice de \mathbb{R}^2 .



Proposition 3.2.1. Toute famille contenant une famille génératrice est génératrice.

Exemple 3.2.2. La famille $(1, X^2 - 1, X^2 + X + 1, 2iX)$ est-elle génératrice de $\mathbb{C}_2[X]$?

3.2.2 Sous espace engendré par une famille de vecteurs

Définition 3.2.2. Soit u_1, \ldots, u_n une famille d'éléments de E. On note

$$F = \text{Vect}(u_1, \dots, u_n) = \{\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n \mid (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n\}$$

donc, $v \in F$ si et seulement si v est combinaison linéaire de u_1, \ldots, u_n . F est un sous espace de E et s'appelle sous-espace vectoriel engendré par u_1, \ldots, u_n .

Exemple 3.2.3. Décrire l'espace vectoriel engendré par X et $X^2 + 1$ dans $\mathbb{C}[X]$.

Remarque 3.2.1. Un espace défini comme étant égal à $Vect(u_1, ..., u_n)$ est le sous-espace vectoriel engendré par ces vecteurs, c'est donc en particulier un sous-espace vectoriel, il n'est pas nécessaire de le prouver.

Proposition 3.2.2. Si un sous-espace vectoriel contient u_1, \ldots, u_n , alors il contient $\text{Vect}(u_1, \ldots, u_n)$.

Théorème 3.2.3. On a $F = \text{Vect}(u_1, \dots, u_n)$ si et seulement si F contient chaque u_i et

$$\forall w \in F, \exists (\lambda_1, \dots, \lambda_n) \in K^n, \ w = \lambda_1 u_1 + \dots + \lambda_n u_n$$

Exemple 3.2.4. Démontrer que $\mathbb{R}^2 = \text{Vect}(\begin{pmatrix} -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \end{pmatrix})$.

Méthode 3.3. Pour déterminer une famille génératrice d'un espace vectoriel E:

- 1. On considère $w \in E$.
- 2. On caractérise l'appartenance de w à E : on en déduit des relations entre ses coefficients.
- 3. On écrit w comme combinaison linéaire de vecteurs constants de $E: e_1, \ldots, e_p$.

Ces vecteurs forment une famille génératrice de E donc $E = \text{Vect}(e_1, \dots, e_p)$.

 $\textbf{Exemple 3.2.5.} \ \ \text{Déterminer une famille génératrice de chacun des espaces vectoriels suivants}:$

1.
$$E = \{(x, y, z) \in \mathbb{R}^3, 2x + y = 0\}$$

2.
$$F = \{ P \in \mathbb{R}_2[X], \ P(2) = 0, P'(1) = 0 \}$$

3.3 Bases

Définition 3.3.1. Une base de E est une famille libre et génératrice de E.

Méthode 3.4. Pour montrer qu'une famille est une base, on montre qu'elle est libre et génératrice.

Exemple 3.3.1. Démontrer que la famille $((-1 \ 0), (1 \ 1))$ est une base de \mathbb{R}^2 .

Théorème 3.3.1. Soit e_1, \ldots, e_n une base de E. On a :

$$\forall w \in E, \ \exists ! (x_1, \dots, x_n) \in \mathbb{K}^n, \ w = x_1 e_1 + \dots + x_n e_n$$

Les nombres (x_1, \ldots, x_n) sont les **coordonnées** de w dans la base (e_1, \ldots, e_n) .

Définition 3.3.2.

ullet La base canonique de \mathbb{K}^n est (e_1,\ldots,e_n) où

$$e_1 = (1 \ 0 \ \dots \ 0), e_2 = (0 \ 1 \ \dots \ 0), \dots, e_n = (0 \ 0 \ \dots \ 1).$$

• La base canonique de $\mathbb{K}_n[X]$ est

$$(1, X, X^2, \ldots, X^n)$$
.

• La base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ est

$$(E_{1,1},E_{1,2},\ldots,E_{n,p})$$

où $E_{i,j}$, avec $i \in [1, n]$ et $j \in [1, p]$, est la matrice qui n'a que des coefficients 0 sauf un coefficient 1 en ligne i colonne j.

Remarque 3.3.1. Les coordonnées d'un vecteur dépendent de la base choisie.

Exemple 3.3.2. On note \mathcal{B}_c la base canonique de \mathbb{R}^3 , c'est-à-dire $\mathcal{B}_c = \begin{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \end{pmatrix}$. On pose $e_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 1 & 1 & -1 \end{pmatrix}$ puis $\mathcal{B} = (e_1, e_2, e_3)$.

- 1. Déterminer les coordonnées du vecteur $\alpha = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ dans la base \mathcal{B}_c de \mathbb{R}^3 .
- 2. Montrer que \mathcal{B} est une base de \mathbb{R}^3 .

3. Déterminer les coordonnées du vecteur α dans la base \mathcal{B} de \mathbb{R}^3 .

Définition 3.3.3. Soient $p \in \mathbb{N}^*$, (e_1, \dots, e_n) une base de E et u_1, \dots, u_p une famille de vecteurs de E. Alors :

$$\forall k \in [1, p], \exists ! (\lambda_{1,k}, \dots, \lambda_{n,k}) \in \mathbb{K}^n, \qquad u_k = \sum_{i=1}^n \lambda_{i,k} e_i$$

On appelle matrice des coordonnées de la famille (u_1, \ldots, u_p) dans la base \mathcal{B} :

$$\operatorname{Mat}_{\mathcal{B}}(u_{1},\ldots,u_{p}) = \begin{pmatrix} \lambda_{1,1} & \lambda_{1,2} & \ldots & \lambda_{1,p} \\ \lambda_{2,1} & \lambda_{2,2} & \ldots & \lambda_{2,p} \\ \vdots & & & \vdots \\ \lambda_{n,1} & \lambda_{n,2} & \ldots & \lambda_{n,p} \end{pmatrix} \in \mathcal{M}_{n,p}(\mathbb{K})$$

3.4 Le cas particulier de $\mathbb{K}[X]$

Théorème 3.4.1. Toute famille de polynômes de degrés deux à deux distincts est libre.

Exemple 3.4.1. La famille $(X, 1 + X + X^2, X^3)$ d'élèments de $\mathbb{C}[X]$ est-elle libre?

Théorème 3.4.2. Toute famille de n+1 polynômes de degrés deux à deux distincts de $\mathbb{K}_n[X]$ constitue une base de cet espace.

Exemple 3.4.2. Donner une base de $\mathbb{R}_3[X]$ (différente de la base canonique).

4 Dimension d'un espace vectoriel

4.1 Définition de la dimension

Théorème 4.1.1. De toute famille génératrice de $E \neq \{O_E\}$ on peut extraire une base.

Exemple 4.1.1. Soit E le sous-espace vectoriel de $\mathbb{R}[X]$ engendré par

$$P_1(X) = 1$$
, $P_2(X) = X$, $P_3(X) = X + 1$, $P_4(X) = 1 + X^3$, $P_5(X) = X - X^3$.

Déterminer une base de E.

Théorème 4.1.2. Toutes les bases d'un espace vectoriel de dimension finie ont même nombre d'éléments.

Définition 4.1.1.

- Si E possède une base finie, alors on dit que E est de dimension finie. Sa dimension est le nombre d'éléments d'une base, notée $\dim(E)$.
- \bullet Sinon, on dit que E est de dimension infinie.

Méthode 4.1. Pour déterminer la dimension d'un ev F on détermine une base de F et la dimension de F est le nombre d'éléments de cette base.

Exemple 4.1.2. 1. Montrer que $\dim(\mathbb{K}^n) = n$.

2. Montrer que dim($\mathbb{K}_n[X]$) = n+1.

3. Montrer que dim $(\mathcal{M}_{n,p}(\mathbb{K})) = np$.

Théorème 4.1.3. Soit E un espace de dimension n. On a :

- Propriétés des familles libres :
 - Toute famille libre de vecteurs de E comporte au plus n éléments.
 - Toute famille libre de vecteurs de E comportant exactement n éléments est une base de E.
- Propriétés des familles génératrices :
 - Toute famille génératrice de vecteurs de E comporte au moins n éléments.
 - Toute famille génératrice de vecteurs de E comportant exactement n éléments est une base de E.

Méthode 4.2. Pour montrer qu'une famille \mathcal{F} est une base de E, on procède par étapes :

- 1. On montre que la famille \mathcal{F} est libre.
- 2. On calcule la dimension de E.
- 3. On conclut en constatant que la famille \mathcal{F} est une famille libre de E qui a dim(E) éléments, donc c'est une base de E.

On peut faire exactement le même raisonnement en remplaçant "famille libre" par "famille génératrice".

Exemple 4.1.3. On pose $e_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$. Montrer que (e_1, e_2, e_3) est une base de \mathbb{R}^3 .

4.2 Dimension et sous-espaces vectoriels

Proposition 4.2.1. Soit F un sous-espace vectoriel de E avec $\dim(E) = n$.

- F est de dimension finie et $\dim(F) \leq \dim(E)$.
- On a $\dim(F) = n$ si et seulement si F = E

Méthode 4.3. Pour démontrer l'égalité de deux espaces vectoriels E et F

- 1. On détermine la dimension de E.
- 2. On détermine la dimension de F.
- 3. On montre que $F \subset E$.
- 4. On conclut : comme $F \subset E$ et $\dim(F) = \dim(E)$, alors F = E.

Exemple 4.2.1. On considère les sous-espace vectoriels $E = \{P \in \mathbb{R}_2[X], \ P(X) = 0\}$ et $F = \{P \in \mathbb{R}_2[X], \ X \text{ divise } P\}$ de $\mathbb{R}_2[X]$. A-t-on E = F?

4.3 Rang d'une famille de vecteurs

Définition 4.3.1. Soit (e_1, \ldots, e_p) une famille d'éléments de E un \mathbb{K} -espace vectoriel. Le rang de la famille est la dimension du sous-espace qu'elle engendre :

$$\operatorname{rang}(e_1,\ldots,e_p) = \dim \left(\operatorname{Vect}(e_1,\ldots,e_p)\right).$$

Méthode 4.4. Pour déterminer le rang d'une famille de vecteurs \mathcal{F} :

- 1. Méthode 1 : On détermine si la famille \mathcal{F} est libre.
 - Si oui, le rang de la famille est son nombre d'éléments.
 - Si non, on considère la famille privée d'un élément et on recommence le raisonnement.
- 2. Méthode 2 : On pose A la matrice constituée des vecteurs de la famille \mathcal{F} et on détermine le rang de A (on échelonne A grâce à un pivot de Gauss et on compte le nombre de pivots non nuls).

Exemple 4.3.1. Déterminer le rang de la famille de vecteurs suivante : $x_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$, $x_2 = \begin{pmatrix} 1 & -1 & 1 & -1 \end{pmatrix}$ et $x_3 = \begin{pmatrix} 1 & 0 & 1 & 1 \end{pmatrix}$.

Théorème 4.3.1. Soit (e_1,\ldots,e_p) une famille d'éléments de E un \mathbb{K} -espace vectoriel de dimension n.

- 1. $\operatorname{rg}(e_1,\ldots,e_p)=p$ si et seulement la famille est libre.
- 2. $\operatorname{rg}(e_1,\ldots,e_p)=n$ si et seulement si la famille est génératrice.
- 3. Si n=p, alors la famille est une base si et seulement si $\operatorname{rg}(e_1,\ldots,e_n)=n.$

Exemple 4.3.2. La famille $(2, X^2 - X + 1, X^2)$ est-elle une famille libre de $\mathbb{R}_2[X]$?