Définition d'une application linéaire $f: E \to F.$	Définition du noyau d'une application linéaire $f: E \to F$.
Applications linéaires	Applications linéaires
Définition de l'image d'une application linéaire $f:E\to F$.	Définition d'un endomorphisme d'un espace vectoriel E .
Applications linéaires	Applications linéaires
Définition d'un isomorphisme d'un espace vectoriel E .	Condition nécessaire et suffisante pour qu'une application linéaire soit injective.
APPLICATIONS LINEAIRES	APPLICATIONS LINÉAIRES
Théorème du rang pour une application linéaire $f:E \to F$.	Définition de la matrice d'un endomorphisme f de E dans une base $B=(e_1,\ldots,e_n)$ de E .

 $\begin{array}{c} \text{Lien entre les matrices colonnes} \\ \text{Mat}_{\mathcal{B}}(x) \text{ et } \text{Mat}_{\mathcal{C}}(x) \text{ des coordonnées de} \\ x \text{ dans les bases } \mathcal{B} \text{ et } \mathcal{C}. \end{array}$

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES

Lien matriciel entre A et B matrices associées à f dans des bases distinctes pour un endomorphisme f d'un espace vectoriel E de dimension finie n.

Applications linéaires

APPLICATIONS LINÉAIRES

Définition du noyau et de l'image de $A \in \mathcal{M}_n(\mathbb{K})$.

Théorème du rang pour la matrice $A \in \mathcal{M}_n(\mathbb{K})$.

APPLICATIONS LINÉAIRES

Applications linéaires