TD 6 - Applications linéaires

Compétences à acquérir :

- ▷ C1 : Calculer des puissances de matrices (utiliser la formule du binôme de Newton ou une récurrence)
- > C2 : Montrer qu'une application est linéaire
- ⊳ C3 : Déterminer un noyau, une image, détermination de l'injectivité, de la surjectivité, de la bijectivité, utilisation du rang
- > C4 : Déterminer la matrice d'une application linéaire dans des bases choisies pour les espaces de départ et d'arrivée
- ▷ C5 : Déterminer l'expression analytique de l'application linéaire à partir de la matrice
- ➤ C7 : Connaître les propriétés des matrices de changement de base (notamment le lien entre deux matrices d'un endormorphisme exprimé dans deux bases différentes), connaître la notion de matrices semblables

Exercice 1 (C1) 🗗 On considère la matrice :

$$A = \begin{pmatrix} 4 & 2 & -4 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

- 1. Exprimer A^2 comme combinaison linéaire de A et I_3 .
- 2. En déduire que A est inversible et exprimer A^{-1} en fonction de A et I_3 .
- 3.(a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, il existe $(a_n, b_n) \in \mathbb{R}^2$ tel que $A^n = a_n A + b_n I_3$.
 - (b) Déterminer l'expression de a_n et b_n en fonction de n pour tout $n \in \mathbb{N}$ puis celle de A^n .

Exercice 2 (C1-C4-C5-C7) \square Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique (notée \mathcal{B}) est :

$$A = \begin{pmatrix} -1 & 6 & -6 \\ 3 & -8 & 10 \\ 3 & -9 & 11 \end{pmatrix}$$

- 1. Déterminer l'expression analytique de f.
- 2. L'application f est-elle bijective? Si oui, en déterminer l'inverse.
- 3. On pose $e_1 = (-1, 1, 1)$, $e_2 = (3, 1, 0)$ et $e_3 = (0, 1, 1)$. Montrer que la famille $\mathcal{C} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .
- 4. En déduire que la matrice A est semblable à une matrice diagonale et exprimer le lien matriciel.
- 5. En déduire la matrice de f^n exprimée dans la base \mathcal{B} pour tout $n \in \mathbb{N}$.

Exercice 3 (C1-C3-C4-C6-C7) \Box On pose $U = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & -3 \\ -1 & 1 & -2 \end{pmatrix}$ et on note u l'endomor-

- phisme de \mathbb{R}^3 dont la matrice canoniquement associée est U.
 - 1. Calculer U^2 et U^3 .
 - 2. Déterminer Ker(u) et Im(u).
 - 3. Posons $u^2 = u \circ u$. Soit $x \in \mathbb{R}^3 \setminus \text{Ker}(u^2)$.
 - (a) Montrer que la famille $(x, u(x), u^2(x))$ est une base de \mathbb{R}^3 .
 - (b) Déterminer la matrice V de u dans cette base.

Exercice 4 (C3-C4-C6-C7) \Box On note f l'endomorphisme de \mathbb{R}^3 dont la matrice, exprimée dans la base canonique de \mathbb{R}^3 , est $M = \begin{pmatrix} 0 & 4 & 4 \\ \frac{3}{4} & 0 & 0 \\ 0 & \frac{2}{5} & 0 \end{pmatrix}$.

- 1. Déterminer les noyaux $\operatorname{Ker}(f-2\operatorname{Id}_{\mathbb{R}^3})$ et $\operatorname{Ker}(f+\operatorname{Id}_{\mathbb{R}^3})$.
- 2. En déduire que la matrice M est semblable à la matrice $N = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$, et déterminer la lier que la matrice M est semblable à la matrice M et déterminer la lier que la matrice M est semblable à la matrice M et déterminer la lier que la matrice M est semblable à la matrice M est déterminer la lier que la matrice M est déterminer la lier que la matrice M est semblable à la matrice M est déterminer la lier que la matrice M est déterminer la matrice M est d miner le lien matriciel entre ces deux matrices.

Exercice 5 (C3-C4-C5-C6) \square On considère les vecteurs u = (1,0), v = (2,-1) et $w = (-3, 1) de \mathbb{R}^2$.

1. Justifier qu'il existe une unique application linéaire $f \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^2)$ telle que :

$$f(1) = u,$$
 $f(X) = v$ et $f(X^2) = w$

puis déterminer l'expression analytique de f.

- 2. Déterminer une base et la dimension de Ker(f) et Im(f).
- 3. L'application f est-elle bijective?

Exercice 6 (C1-C3-C4-C5-C6-C7) \square Soient $n \in \mathbb{N} \setminus \{0,1\}$ et f l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique (e_1, \ldots, e_n) de \mathbb{R}^n est $A = \begin{pmatrix} 1 & 1 & \ldots & 1 \\ 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \ldots & 0 \end{pmatrix}$.

- 1. Déterminer l'image de f.
- 2. Quelle est la dimension du noyau de f? En déduire Ker(f).
- 3. On pose $\varepsilon = e_1 + \cdots + e_n$ et $F = \text{Vect}(e_1, \varepsilon)$.
 - (a) Justifier que F est de dimension 2 puis montrer que l'application q définie sur F par g(x) = f(x) pour tout $x \in F$ est un endomorphisme de F.
 - (b) Quelle est la matrice de g dans la base (e_1, ε) de F?
- 4. Déterminer A^2 .

Exercice 7 (C2-C3-C6) On considère l'application :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ (x_1, \dots, x_n) & \longmapsto & \sum_{k=1}^n x_k \end{array} \right.$$

On note (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n .

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$.
- 2. Justifier que f est surjective. Quelle est la dimension du noyau de f?
- 3. Montrer qu'une base de Ker(f) est $(e_1 e_n, e_2 e_n, \dots, e_{n-1} e_n)$.

Exercice 8 (C2-C3-C6) \square Soit $n \in \mathbb{N}^*$. On considère l'application :

$$\Phi: \left\{ \begin{array}{ccc} \mathbb{C}_n[X] & \longrightarrow & \mathbb{C}_n[X] \\ \mathrm{P} & \longmapsto & \mathrm{P}(X+2) - \mathrm{P}(X) \end{array} \right.$$

- 1. Montrer que Φ est un endomorphisme de $\mathbb{C}_n[X]$.
- 2.(a) Soit $P \in Ker(\Phi)$. On suppose que $deg(P) \ge 1$. En utilisant le théorème de D'Alembert-Gauss, montrer que P admet une infinité de racines.
 - (b) Conclure que $Ker(\Phi) = \mathbb{C}_0[X]$.
 - (c) En déduire que $\operatorname{Im}(\Phi) = \mathbb{C}_{n-1}[X]$.

Exercice 9 (C2-C3-C4-C6-C7) $\ \, \Box \ \,$ Soit $\ \, \Phi \,$ l'application qui à tout polynôme $\ \, P \in \mathbb{R}[X]$ associe le polynôme :

$$\Phi(P) = X^2 P' - 2(X - 1) P$$

1. Question préliminaire : résoudre dans \mathbb{R}_+^* l'équation différentielle :

$$x^2y' - 2(x-1)y = 0$$

- 2. Montrer que Φ est un endomorphisme de $\mathbb{R}[X]$.
- 3. Déterminer le noyau de $\Phi.$ Conclure.
- 4. Soit $n \in \mathbb{N}$. Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$ si et seulement si n=2.
- 5. Montrer qu'il existe une base (P_1, P_2, P_3) de $\mathbb{R}_2[X]$ dans laquelle la matrice de Φ est :

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 10 (C3) $\ \ \, \ \,$ Soient E un \mathbb{K} -espace vectoriel et $(f,g)\in\mathcal{L}(E)^2$. Les trois questions sont indépendantes.

- 1. Montrer que $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$ et $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$.
- 2. Montrer que $f \circ g = 0_{\mathcal{L}(E)}$ si et seulement si $\mathrm{Im}(g) \subset \mathrm{Ker}(f)$.
- 3. On dit qu'un sous-ensemble A de E est invariant par une application linéaire $h \in \mathcal{L}(E)$ si $h(A) \subset A$.

3

Montrer que si f et g commutent, c'est-à-dire si $f \circ g = g \circ f$, alors $\operatorname{Ker}(g)$ et $\operatorname{Im}(g)$ sont invariants par f.

Exercice 11 (C2-C3-C4-C7) \square Soit $P = \begin{pmatrix} -4 & 3 \\ -6 & 5 \end{pmatrix}$. On considère l'application :

$$u: \left\{ \begin{array}{ccc} \mathcal{M}_2(\mathbb{R}) & \longrightarrow & \mathcal{M}_2(\mathbb{R}) \\ M & \longmapsto & PM \end{array} \right.$$

- 1. Montrer que u est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. On définit les quatre matrices de $\mathcal{M}_2(\mathbb{R})$ suivantes :

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \qquad E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \qquad E_{2,1} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad \text{et} \quad E_{2,2} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

On pose $\mathcal{B}=(E_{1,1},E_{1,2},E_{2,1},E_{2,2}).$ Vérifier que \mathcal{B} est une base de $\mathcal{M}_2(\mathbb{R}).$

- 3. Donner la matrice de u dans la base \mathcal{B} de $\mathcal{M}_2(\mathbb{R})$. Déterminer $\mathrm{Im}(u)$ et $\mathrm{Ker}(u)$.
- 4. Donner la matrice canoniquement associée à u. Déterminer le lien avec la matrice obtenue à la question précédente.

Exercice 12 (C2-C3-C4-C5-C6) $\ \ \,$ On considère les fonctions définies sur \mathbb{R} par, pour tout $x \in \mathbb{R}$,

$$f_1(x) = \cos(x),$$
 $f_2(x) = \sin(x),$ $f_3(x) = x\cos(x)$ et $f_4(x) = x\sin(x)$

On pose $E = Vect(f_1, f_2, f_3, f_4)$.

- 1. Montrer que (f_1, f_2, f_3, f_4) est une base de E.
- 2. On considère l'opérateur de dérivation $d: f \mapsto f'$.
 - (a) Montrer que d est un endomorphisme de E.
 - (b) Écrire la matrice D de d dans la base (f_1, f_2, f_3, f_4) de E.
 - (c) Montrer que D est inversible et donner son inverse.

Exercice 13 (C2-C3-C6) $\ \ \ \$ On note E le \mathbb{R} -espace vectoriel $\mathcal{C}(\mathbb{R},\mathbb{R})$ des fonctions continues sur \mathbb{R} à valeurs réelles. On considère l'application Φ définie sur E qui à toute fonction f de E associe la fonction F définie par F(0) = f(0) et par :

$$\forall x \in \mathbb{R}^*, \qquad F(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$$

- 1. Montrer que $\Phi \in \mathcal{L}(E)$.
- 2. Justifier que, pour tout $f \in E$, la fonction $\Phi(f)$ est dérivable sur \mathbb{R}^* . Que peut-on en déduire sur la surjectivité de Φ ?
- 3. Étudier l'injectivité de Φ .

Exercice 14 (C2-C3) \square Soit E l'espace vectoriel des suites convergentes. On considère l'application T qui à une suite u de E associe la suite v définie par :

$$\forall n \in \mathbb{N}, \qquad v_n = u_{n+2} + 2u_{n+1} - 3u_n$$

- 1. Montrer que T est un endomorphisme de E.
- 2. Déterminer une base du noyau de T.
- 3. On étudie maintenant la surjectivité de T.
 - (a) On suppose que la suite constante égale à 1 admet un antécédent $(u_n)_{n\in\mathbb{N}}$ par T dans E. Montrer que :

$$\forall n \in \mathbb{N}, \quad u_{n+2} + 3u_{n+1} = n + 1 + u_1 + 3u_0$$

(b) Conclure quant à la surjectivité de T.

Exercice 15 (C5) 1. Écrire une fonction python qui calcule les racines d'un trinôme du second degré à coefficients réels.

Le nombre complexe i s'écrit 1j sous python. Il est disponible dans le module cmath.

- 2. On pose $F = \{aX^4 + bX^3 + cX^2 + bX + a \mid (a, b, c) \in \mathbb{R}^3 \}$. Montrer que F est un sous-espace vectoriel de $\mathbb{R}_4[X]$.
- 3. On pose $\mathcal{C} = (X^2, X + X^3, 1 + X^4)$. Montrer que \mathcal{C} est une base de F.
- 4. Soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$ et $f : \mathbb{R}_2[X] \longrightarrow F$ l'application linéaire dont la matrice exprimée dans les bases \mathcal{B} et \mathcal{C} est $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - (a) Justifier que A est inversible et calculer A^{-1} .
 - (b) Déterminer l'expression analytique de f.
- 5. Soit $P \in \mathbb{R}_2[X]$ et Q = f(P). Montrer que pour tout $x \in \mathbb{R}^*$, on a :

$$Q(x) = x^2 P\left(x + \frac{1}{x}\right)$$

Exercice 16 (C2-C3) \Box On désigne par E l'espace vectoriel des suites réelles et :

$$F = \{(u_n)_{n \in \mathbb{N}} \in E \mid \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} - u_n \}$$

- 1. Démontrer que F est un sous-espace vectoriel de E.
- 2. Montrer que l'application $L: \left\{ \begin{array}{ccc} F & \longrightarrow & \mathbb{R}^2 \\ (u_n)_{n \in \mathbb{N}} & \longmapsto & (u_0, u_1) \end{array} \right.$ est un isomorphisme d'espaces vectoriels.
- 3. Résoudre dans $\mathbb C$ l'équation $r^2-r+1=0$. On notera θ un argument de l'une des solutions.
- 4. On définit les suites $\alpha=(\alpha_n)_{n\in\mathbb{N}}$ et $\beta=(\beta_n)_{n\in\mathbb{N}}$ par :

$$\forall n \in \mathbb{N}, \qquad \alpha_n = \cos(n\theta) \qquad \text{et} \qquad \beta_n = \sin(n\theta)$$

5

Démontrer que (α, β) est une base de F.

Exercice 17 (C1-C2-C4-C7) $\ \ \,$ Notons $\ \, \mathcal D$ l'espace vectoriel des fonctions dérivables sur $\ \, \mathbb R$ à valeurs réelles. On considère le sous-ensemble de $\ \, \mathcal D$ suivant :

$$E = \left\{ x \longmapsto (ax + b) e^{-x} \mid (a, b) \in \mathbb{R}^2 \right\}$$

On note d'iopérateur de dérivation des fonctions défini par d(f) = f' pour tout $f \in \mathcal{D}$.

- 1. Montrer que E est un espace vectoriel, en donner une base et la dimension.
- 2. Montrer que d est un endomorphisme de E et déterminer sa matrice A dans la base obtenue à la question 1.
- 3. Déterminer la dérivée de $x \mapsto (x+1) e^{-x}$ en utilisant la matrice A.
- 4. Déterminer la fonction de E dont la dérivée est $x \longmapsto (2x+3) e^{-x}$ en utilisant la matrice A.
- 5. Donner une méthode pour calculer la dérivée $n^{\rm e}$ de la fonction $f: x \longmapsto (x+1) {\rm e}^{-x}$ pour tout entier naturel n.

Exercice 18 (C2-C3-C6) On considère l'application :

$$\Phi: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R}^{n+1} \\ P & \longmapsto & \left(P(0), P(1), \dots, P(n)\right) \end{array} \right.$$

- 1. Montrer que $\Phi \in \mathcal{L}(\mathbb{R}_n[X], \mathbb{R}^{n+1})$.
- 2. L'application Φ est-elle injective? surjective? bijective?
- 3. Déterminer les antécédents des vecteurs de la base canonique de \mathbb{R}^{n+1} par Φ .