TD 6 Correction - Applications linéaires

Compétences à acquérir :

- ▷ C1 : Calculer des puissances de matrices (utiliser la formule du binôme de Newton ou une récurrence)
- > C2 : Montrer qu'une application est linéaire
- ⊳ C3 : Déterminer un noyau, une image, détermination de l'injectivité, de la surjectivité, de la bijectivité, utilisation du rang
- > C4 : Déterminer la matrice d'une application linéaire dans des bases choisies pour les espaces de départ et d'arrivée
- ▷ C5 : Déterminer l'expression analytique de l'application linéaire à partir de la matrice
- ▷ C7 : C7 : Connaître les propriétés des matrices de changement de base (notamment le lien entre deux matrices d'un endormorphisme exprimé dans deux bases différentes), connaître la notion de matrices semblables

Exercice 1 (C3) 🗗 On considère la matrice :

$$A = \begin{pmatrix} 4 & 2 & -4 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

- 1. Exprimer A^2 comme combinaison linéaire de A et I_3 . On trouve $A^2 = 4A - 4I_3$.
- 2. En déduire que A est inversible et exprimer A^{-1} en fonction de A et I_3 . D'après ce qui précède, on a $A^2 - 4A = -4I_3$ donc $-\frac{1}{4}(A^2 - 4A) = I_3$, ce qui se réécrit :

$$A\left(-\frac{1}{4}A + I_3\right) = \left(-\frac{1}{4}A + I_3\right)A = I_3$$

Donc la matrice A est inversible d'inverse $-\frac{1}{4}A + I_3 = \begin{pmatrix} 0 & -\frac{1}{2} & 1 \\ 0 & \frac{1}{2} & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 1 \end{pmatrix}$.

3.(a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, il existe $(a_n, b_n) \in \mathbb{R}^2$ tel que $A^n = a_n A + b_n I_3$.

On utilise un raisonnement par récurrence simple. Pour tout entier naturel n, on considère la proposition :

$$\mathcal{P}_n$$
: « il existe $(a_n, b_n) \in \mathbb{R}^2$ tel que $A^n = a_n A + b_n I_3$ »

• Initialisation : en posant $a_0 = 0$ et $b_0 = 1$, on a :

$$A^0 = I_3 = a_0 \times A + b_0 I_3$$

donc la proposition \mathcal{P}_0 est vraie.

• **Hérédité**: soit $n \in \mathbb{N}$ tel que la proposition \mathcal{P}_n soit vraie. Montrons que la proposition \mathcal{P}_{n+1} est vraie. Par hypothèse de récurrence, il existe $(a_n, b_n) \in \mathbb{R}^2$ tel que $A^n = a_n A + b_n I_3$. Donc :

$$A^{n+1} = A^n A = (a_n A + b_n I_3) A = a_n A^2 + b_n A = a_n (4A - 4I_3) + b_n A$$
 (d'après la question
$$= (4a_n + b_n) A - 4a_n I_3$$

En posant $a_{n+1}=4a_n+b_n\in\mathbb{R}$ et $b_{n+1}=-4a_n\in\mathbb{R}$, on a l'égalité $A^{n+1}=a_{n+1}A+b_{n+1}I_3$. La proposition \mathcal{P}_{n+1} est donc vraie.

• Conclusion : pour tout entier naturel n, la proposition \mathcal{P}_n est vraie par principe de récurrence simple.

Ainsi:

$$\forall n \in \mathbb{N}, \ \exists (a_n, b_n) \in \mathbb{R}^2, \qquad A^n = a_n A + b_n I_3$$
 (0.1)

(b) Déterminer l'expression de a_n et b_n en fonction de n pour tout $n \in \mathbb{N}$ puis celle de A^n . On sait que $a_0 = 0$, $b_1 = 1$ et :

$$\forall n \in \mathbb{N}, \quad a_{n+1} = 4a_n + b_n \quad \text{et} \quad b_{n+1} = -4a_n$$

Remarquons de plus que $A^1 = A = 1 \times A + 0 \times I_3$ donc $a_1 = 1$ et $b_1 = 0$. Les relations de récurrences précédentes impliquent que :

$$\forall n \in \mathbb{N}, \quad a_{n+2} = 4a_{n+1} + b_{n+1} = 4a_{n+1} - 4a_n$$

La suite $(a_n)_{n\in\mathbb{N}}$ est récurrente linéaire d'ordre 2. L'équation caractéristique associée $x^2 - 4x + 4 = 0$ admet pour racine double 2. Il existe donc $(A, B) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{N}, \qquad a_n = (An + B)2^n$$

Déterminons A et B. On résout :

$$\begin{cases} a_0 = 0 \\ a_1 = 1 \end{cases} \iff \begin{cases} B = 0 \\ 2(A+B) = 1 \end{cases} \iff \begin{cases} B = 0 \\ A = \frac{1}{2} \end{cases}$$

Ainsi:

$$\forall n \in \mathbb{N}, \quad a_n = n2^{n-1} \quad \text{et, si } n \geqslant 1, \quad b_n = -4a_{n-1} = -(n-1)2^n$$

Cette dernière égalité est vraie pour n=0 puisque $b_0=1$. On obtient l'expression de A^n pour tout $n \in \mathbb{N}$ en remplaçant les valeurs de a_n et b_n dans (0.1). On obtient

$$\forall n \in \mathbb{N}^*, \ A^n = n2^{n-1}A - (n-1)2^nI_3$$
.

Exercice 2 (C1-C4-C5-C7) \Box Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique (notée \mathcal{B}) est :

$$A = \begin{pmatrix} -1 & 6 & -6 \\ 3 & -8 & 10 \\ 3 & -9 & 11 \end{pmatrix}$$

1. Déterminer l'expression analytique de f.

Soit $(x, y, z) \in \mathbb{R}^3$. On a:

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x + 6y - 6z \\ 3x - 8y + 10z \\ 3x - 9y + 11z \end{pmatrix}$$

donc l'expression analytique de f est :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x, y, z) & \longmapsto & (-x + 6y - 6z, 3x - 8y + 10z, 3x - 9y + 11z) \end{array} \right.$$

2. L'application f est-elle bijective? Si oui, en déterminer l'inverse.

Soit $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On résout l'équation $A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ d'inconnue $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On

trouve que A est inversible (le système obtenu est de Cramer) d'inverse

 $A^{-1} = \begin{pmatrix} -1 & 6 & -6 \\ \frac{3}{2} & -\frac{7}{2} & 4 \\ \frac{3}{2} & -\frac{9}{2} & 5 \end{pmatrix}.$ On en déduit donc que f est bijective et on obtient l'expression

analytique de f^{-1} avec la même méthode qu'à la question 1. On obtient :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & \left(-x+6y-6z, \frac{3}{2}x-\frac{7}{2}y+4z, \frac{3}{2}x-\frac{9}{2}y+5z\right) \end{array} \right.$$

3. On pose $e_1 = (-1, 1, 1), e_2 = (3, 1, 0)$ et $e_3 = (0, 1, 1)$. Montrer que la famille $\mathcal{C} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .

On calcule le rang de la famille \mathcal{C} et on trouve 3. Or cette famille est composée de 3 vecteurs dans l'espace vectoriel \mathbb{R}^3 de dimension 3 donc :

$$\mathcal{C}$$
 est une base de \mathbb{R}^3

4. En déduire que la matrice A est semblable à une matrice diagonale et exprimer le lien matriciel.

On a
$$f(e_1) = (1, -1, -1) = -e_1$$
, $f(e_2) = (3, 1, 0) = e_2$ et $f(e_3) = (0, 2, 2) = 2e_3$. La matrice de f exprimée dans la base C de \mathbb{R}^3 est la matrice diagonale $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Les matrices A et B sont des matrices de f (exprimées dans des bases différentes) donc :

les matrices A et B sont semblables (et la matrice B est diagonale)

Notons P la matrice de passage de la base \mathcal{B} vers la base \mathcal{C} . On a alors les égalités :

$$P = \begin{pmatrix} -1 & 3 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ et } A = PBP^{-1}$$

5. En déduire la matrice de f^n exprimée dans la base \mathcal{B} pour tout $n \in \mathbb{N}$. On montre par récurrence que :

$$\forall n \in \mathbb{N}, \qquad A^n = PB^n P^{-1}$$

Soit $n \in \mathbb{N}$. Comme B est diagonale, on a $B^n = \begin{pmatrix} (-1)^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix}$. La matrice de f^n

exprimée dans la base canonique de \mathbb{R}^3 est alors A^n . On calcule P^{-1} et on trouver P^{-1}

$$\begin{pmatrix} -1 & 3 & -3 \\ 0 & 1 & -1 \\ 1 & -3 & 4 \end{pmatrix}$$
. Il reste à calculer A^n :

$$A^{n} = \begin{pmatrix} (-1)^{n} & 3((-1)^{n+1} + 1) & 3 \times (-1)^{n} - 3\\ (-1)^{n+1} + 2^{n} & 3 \times (-1)^{n} + 1 - 3 \times 2^{n} & 3 \times (-1)^{n} - 1 - 2^{n+2}\\ (-1)^{n+1} + 2^{n} & 3 \times (-1)^{n} - 3 \times 2^{n} & 3 \times (-1)^{n} - 2^{n+2} \end{pmatrix}$$

et, pour trouver l'expression analytique, on calcule $\forall (x, y, z) \in \mathbb{R}^3$:

$$A^{n} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (-1)^{n}x + 3((-1)^{n+1} + 1)y + (3 \times (-1)^{n} - 3)z \\ ((-1)^{n+1} + 2^{n})x + (3 \times (-1)^{n} + 1 - 3 \times 2^{n})y + (3 \times (-1)^{n} - 1 - 2^{n+2})z \\ ((-1)^{n+1} + 2^{n})x + (3 \times (-1)^{n} - 3 \times 2^{n})y + (3 \times (-1)^{n} - 2^{n+2})z \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

L'expression analytique de f^n est alors :

$$f^n: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (\alpha,\beta,\gamma) \end{array} \right.$$

Exercice 3 (C1-C3-C4-C6-C7) \square On pose $U = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & -3 \\ -1 & 1 & -2 \end{pmatrix}$ et on note u l'endomorphisme de \mathbb{R}^3 dont la matrice canoniquement associée est U.

1. Calculer U^2 et U^3 .

On obtient
$$U^2 = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{pmatrix}$$
 et $U^3 = 0_{\mathcal{M}_3(\mathbb{R})}$.

2. Déterminer Ker(u) et Im(u).

Déterminons le noyau de u. Soit $(x, y, z) \in \mathbb{R}^3$. Alors :

$$(x,y,z) \in \operatorname{Ker}(u) \iff \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & -3 \\ -1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} x & -y + 2z = 0 & L_1 \\ -2x + y - 3z = 0 & L_2 \\ -x + y - 2z = 0 & L_3 \end{cases}$$

$$\iff \dots$$

$$\iff (x,y,z) = (-z,z,z) = z(-1,1,1)$$

$$\iff (x,y,z) \in \operatorname{Ker}((-1,1,1))$$

donc Ker(u) = Ker((-1,1,1))

Déterminons l'image de u. On sait que :

$$Im(u) = Vect(f(1,0,0), f(0,1,0), f(0,0,1)) = Vect((1,-2,-1), (-1,1,1), (2,-3,-2))$$

et donc
$$[Im(u) = Vect((1, -2, -1), (-1, 1, 1))]$$
 car $(2, -3, -2) = (1, -2, -1) - (-1, 1, 1)$.

- 3. Posons $u^2 = u \circ u$. Soit $x \in \mathbb{R}^3 \setminus \text{Ker}(u^2)$.
 - (a) Montrer que la famille $(x, u(x), u^2(x))$ est une base de \mathbb{R}^3 . Soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$. On suppose que $\alpha x + \beta u(x) + \gamma u^2(x) = 0_{\mathbb{R}^3}$. Montrons que $\alpha = \beta = \gamma = 0$. En composant par u^2 et en utilisant la linéarité de u^2 , on a :

$$\alpha u^2(x) + \beta u^3(x) + \gamma u^4(x) = 0_{\mathbb{R}^3}$$

Or $U^3 = 0_{\mathcal{M}_3(\mathbb{R})}$ donc $u^3 = 0_{\mathcal{L}(\mathbb{R}^3)}$. On a aussi $u^4 = 0_{\mathcal{L}(\mathbb{R}^3)}$. Donc $u^3(x) = u^4(x) = 0_{\mathbb{R}^3}$. Il reste donc dans l'équation précédente :

$$\alpha u^2(x) = 0_{\mathbb{R}^3}$$

Or $x \notin \text{Ker}(u^2)$ donc $u^2(x) \neq 0_{\mathbb{R}^3}$. Ainsi, $\alpha = 0$. Il reste donc $\beta u(x) + \gamma u^2(x) = 0_{\mathbb{R}^3}$. En appliquant la fonction u, on obtient $\beta = 0$ puis $\gamma = 0$. Finalement :

la famille
$$(x, u(x), u^2)$$
 est une base de \mathbb{R}^3

car elle est libre, comporte trois vecteurs et car $\dim(\mathbb{R}^3) = 3$.

(b) Déterminer la matrice V de u dans cette base.

La matrice de u dans cette nouvelle base de \mathbb{R}^3 est $V = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

5

Exercice 4 (C3-C4-C6-C7) $\ \, \Box \ \,$ On note f l'endomorphisme de \mathbb{R}^3 dont la matrice, exprimée dans la base canonique de \mathbb{R}^3 , est $M = \begin{pmatrix} 0 & 4 & 4 \\ \frac{3}{4} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \end{pmatrix}$.

1. Déterminer les noyaux $\operatorname{Ker}(f - 2\operatorname{Id}_{\mathbb{R}^3})$ et $\operatorname{Ker}(f + \operatorname{Id}_{\mathbb{R}^3})$. Soit $(x, y, z) \in \mathbb{R}^3$. La matrice canoniquement associée à f est M donc, en notant \mathcal{B}_c la base canonique de \mathbb{R}^3 , on sait que :

$$\operatorname{Mat}_{\mathcal{B}_c}(f(x,y,z)) = M \operatorname{Mat}_{\mathcal{B}_c}((x,y,z)) = M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4y + 4z \\ \frac{3}{4}x \\ \frac{2}{3}y \end{pmatrix}$$

Ainsi:

$$f(x, y, z) = \left(4y + 4z, \frac{3}{4}x, \frac{2}{3}y\right)$$

Par définition:

$$Ker(f - 2 \operatorname{Id}_{\mathbb{R}^3}) = \left\{ u \in \mathbb{R}^3 \mid (f - 2 \operatorname{Id}_{\mathbb{R}^3})(u) = 0_{\mathbb{R}^3} \right\}$$
$$= \left\{ u \in \mathbb{R}^3 \mid f(u) - 2 \operatorname{Id}_{\mathbb{R}^3}(u) = 0_{\mathbb{R}^3} \right\}$$
$$= \left\{ u \in \mathbb{R}^3 \mid f(u) - 2u = 0_{\mathbb{R}^3} \right\}$$

Ainsi, on obtient:

$$(x, y, z) \in \text{Ker}(f - 2 \text{Id}_{\mathbb{R}^3}) \iff f(x, y, z) - 2 \text{Id}_{\mathbb{R}^3}(x, y, z) = (0, 0, 0)$$

$$\iff \left(4y + 4z, \frac{3}{4}x, \frac{2}{3}y\right) - 2(x, y, z) = (0, 0, 0)$$

$$\iff \left(-2x + 4y + 4z, \frac{3}{4}x - 2y, \frac{2}{3}y - 2z\right) = (0, 0, 0)$$

$$\iff \begin{cases} -x + 2y + 2z &= 0 & \text{L}_1\\ 3x - 8y &= 0 & \text{L}_2\\ y - 3z &= 0 & \text{L}_3 \end{cases}$$

$$\iff \begin{cases} -x + 2y + 2z &= 0 & \text{L}_1\\ -y + 3z &= 0 & \text{L}_2 \leftarrow \frac{1}{2}(\text{L}_2 + 3 \text{L}_1)\\ y - 3z &= 0 & \text{L}_3 \end{cases}$$

$$\iff \begin{cases} x &= 8z\\ y &= 3z\\ \Leftrightarrow (x, y, z) = z(8, 3, 1)\\ \Leftrightarrow (x, y, z) \in \text{Vect}((8, 3, 1)) \end{cases}$$

Ainsi:

$$\operatorname{Ker}(f - 2\operatorname{Id}_{\mathbb{R}^3}) = \operatorname{Vect}((8, 3, 1))$$

De même, pour tout $(x, y, z) \in \mathbb{R}^3$, on a :

$$(x,y,z) \in \operatorname{Ker}(f+\operatorname{Id}_{\mathbb{R}^3}) \iff f(x,y,z) + (x,y,z) = (0,0,0)$$

$$\iff \left(x+4y+4z, \frac{3}{4}x+y, \frac{2}{3}y+z\right) = (0,0,0)$$

$$\iff \left\{ \begin{array}{c} x+4y+4z &= 0 \quad \operatorname{L}_1 \\ 3x+4y &= 0 \quad \operatorname{L}_2 \\ 2y+3z &= 0 \quad \operatorname{L}_3 \end{array} \right.$$

$$\iff \left\{ \begin{array}{c} x+4y+4z &= 0 \quad \operatorname{L}_1 \\ -2y-3z &= 0 \quad \operatorname{L}_2 \leftarrow \frac{1}{4}(\operatorname{L}_2-3\operatorname{L}_1) \\ 2y+3z &= 0 \quad \operatorname{L}_3 \end{array} \right.$$

$$\iff \left\{ \begin{array}{c} x &= 2z \\ y &= -\frac{3}{2}z \end{array} \right.$$

$$\iff (x,y,z) = z \left(2, -\frac{3}{2}, 1 \right)$$

$$\iff (x,y,z) \in \operatorname{Vect}\left(\left(2, -\frac{3}{2}, 1 \right) \right)$$

On a donc:

$$\operatorname{Ker}(f + \operatorname{Id}_{\mathbb{R}^3}) = \operatorname{Vect}\left(\left(2, -\frac{3}{2}, 1\right)\right) = \operatorname{Vect}\left((4, -3, 2)\right)$$

2. En déduire que la matrice M est semblable à la matrice $N = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$, et déter-

miner le lien matriciel entre ces deux matrices.

Dire que M et N sont semblables signifie qu'il existe une matrice inversible P d'ordre R telle que $M=PNP^{-1}$. On sait que R est la matrice canoniquement associée à R. L'égalité R = R signifie donc que R est la matrice de R dans une base adaptée de R. Pour répondre à la question, il suffit donc de chercher une base R = R dans laquelle la matrice de R est R doivent donc satisfaire les relations :

$$f(u) = 2u,$$
 $f(v) = -v$ et $f(w) = v - w$

- Posons u = (8, 3, 1). On sait que $u \in \text{Ker}(f 2 \operatorname{Id}_{\mathbb{R}^3})$ donc f(u) = 2u.
- Posons ensuite v=(4,-3,2). On sait que $v\in \mathrm{Ker}(f+\mathrm{Id}_{\mathbb{R}^3})$ donc f(v)=-v.

• Soit maintenant $w = (x, y, z) \in \mathbb{R}^3$. On résout :

$$f(w) = v - w \iff f(w) + w = v$$

$$\iff \left(x + 4y + 4z, \frac{3}{4}x + y, \frac{2}{3}y + z\right) = (4, -3, 2)$$

$$\iff \left\{\begin{array}{cccc} x + 4y + 4z & = & 4 & L_1 \\ 3x + 4y & = & -12 & L_2 \\ 2y + 3z & = & 6 & L_3 \end{array}\right.$$

$$\iff \left\{\begin{array}{cccc} x + 4y + 4z & = & 4 & L_1 \\ -2y - 3z & = & -6 & L_2 \leftarrow \frac{1}{4}(L_2 - 3L_1) \\ 2y + 3z & = & 6 & L_3 \end{array}\right.$$

$$\iff \left\{\begin{array}{cccc} x = -8 + 2z \\ y = & 3 - \frac{3}{2}z \end{array}\right.$$

$$\iff w = \left(-8 + 2z, 3 - \frac{3}{2}z, z\right)$$

Par exemple, pour z=0, le vecteur w=(-8,3,0) est tel que f(w)=v-w. Vérifions enfin que la famille $\mathcal{B}=(u,v,w)$ ainsi construite est une base de \mathbb{R}^3 . On a :

$$rg(\mathcal{B}) = rg\begin{pmatrix} 8 & 4 & -8 \\ 3 & -3 & 3 \\ 1 & 2 & 0 \end{pmatrix} \begin{array}{c} L_1 \\ L_2 \\ L_3 \end{array} = rg\begin{pmatrix} 8 & 4 & -8 \\ 0 & 36 & -48 \\ 0 & 12 & 8 \end{pmatrix} \begin{array}{c} L_1 \\ L_2 \leftarrow 3L_1 - 8L_2 \\ L_3 \leftarrow 8L_3 - L_1 \end{array}$$
$$= rg\begin{pmatrix} 8 & 4 & -8 \\ 0 & 36 & -48 \\ 0 & 0 & 72 \end{pmatrix} \begin{array}{c} L_1 \\ L_2 \\ L_3 \leftarrow 3L_2 - L_2 \end{array}$$
$$= 3$$

La famille \mathcal{B} est de rang 3 dans l'espace vectoriel \mathbb{R}^3 qui est de dimension 3, et cette famille comporte 3 vecteurs. Celle-ci est donc bien une base de \mathbb{R}^3 . La matrice de f exprimée dans cette base est :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix} = N$$

Ainsi:

en notant P la matrice de passage de la base canonique de \mathbb{R}^3 vers la base \mathcal{B} , c'est-à-dire en posant $P = \begin{pmatrix} 8 & 4 & -8 \\ 3 & -3 & 3 \\ 1 & 2 & 0 \end{pmatrix}$, alors on a l'égalité :

$$M = PNP^{-1}$$

Les matrices M et N sont donc semblables.

Exercice 5 (C3-C4-C5-C6) \square On considère les vecteurs u = (1,0), v = (2,-1) et w = (-3,1) de \mathbb{R}^2 .

1. Justifier qu'il existe une unique application linéaire $f \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^2)$ telle que :

$$f(1) = u,$$
 $f(X) = v$ et $f(X^2) = w$

puis déterminer l'expression analytique de f.

On sait que la famille $(1, X, X^2)$ est une base de $\mathbb{R}_2[X]$ (il s'agit de la base canonique de $\mathbb{R}_2[X]$) donc :

il existe une unique application linéaire
$$f \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^2)$$
 telle que $f(1) = u, f(X) = v$ et $f(X^2) = w$

Déterminons l'expression analytique de f.

Soit $P \in \mathbb{R}_2[X]$. Îl existe $(a,b,c) \in \mathbb{R}^2$ tel que $P=aX^2+bX+c$. Par linéarité de f, on a :

$$f(P) = af(X^{2}) + bf(X) + cf(1) = aw + bv + cu = a(-3, 1) + b(2, -1) + c(1, 0)$$
$$= (-3a + 2b + c, a - b)$$

Donc l'expression analytique de f est

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^2 \\ aX^2 + bX + c & \longmapsto & (-3a + 2b + c, a - b) \end{array} \right.$$

Remarque: on peut aussi raisonner comme suit. La matrice de f exprimée dans les bases canoniques $\mathcal{B} = (1, X, X^2)$ et $\mathcal{C} = ((1, 0), (1, 0))$ de $\mathbb{R}_2[X]$ et \mathbb{R}^2 respectivement est :

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & -1 & 1 \end{pmatrix}$$

Soit $P = aX^2 + bX + c \in \mathbb{R}_2[X]$. Alors:

$$\operatorname{Mat}_{\mathcal{C}}(f(P)) = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) \operatorname{Mat}_{\mathcal{B}}(P) = \begin{pmatrix} 1 & 2 & -3 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} c \\ b \\ a \end{pmatrix} = \begin{pmatrix} c + 2b - 3a \\ -b + a \end{pmatrix}$$

donc $f(aX^2 + bX + c) = (-3a + 2b + c, a - b)$.

2. Déterminer une base et la dimension de $\operatorname{Ker}(f)$ et $\operatorname{Im}(f)$. Déterminons le noyau de f. Soit $P \in \mathbb{R}_2[X]$. Il existe $(a,b,c) \in \mathbb{R}^3$ tel que $P = aX^2 + bX + c$.

$$P \in \operatorname{Ker}(f) \iff f(P) = 0_{\mathbb{R}^2} \iff (-3a + 2b + c, a - b) = (0, 0)$$

$$\iff \begin{cases} a - b & = 0 \quad L_1 \\ -3a + 2b + c & = 0 \quad L_2 \end{cases}$$

$$\iff \begin{cases} a - b & = 0 \quad L_1 \\ - b + c & = 0 \quad L_2 \leftarrow L_2 + 3L_1 \end{cases}$$

$$\iff a = b = c$$

$$\iff P = a(X^2 + X + 1)$$

$$\iff P \in \operatorname{Vect}(X^2 + X + 1)$$

Ainsi, $Ker(f) = Vect(X^2 + X + 1)$. La famille $(X^2 + X + 1)$ est génératrice de Ker(f) et elle est libre car elle est constituée d'un unique vecteur non nul. Ainsi :

une base de
$$\operatorname{Ker}(f)$$
 est (X^2+X+1) et donc $\dim(\operatorname{Ker}(f))=1$

Comme $\mathbb{R}_2[X]$ est un espace vectoriel de dimension finie, on peut appliquer le théorème du rang et on a :

$$\dim(\operatorname{Im}(f)) = \dim(\mathbb{R}_2[X]) - \dim(\operatorname{Ker}(f)) = 3 - 1 = 2$$

Or Im(f) est un sous-espace vectoriel de \mathbb{R}^2 et on a $\dim(\text{Im}(f)) = \dim(\mathbb{R}^2)$ donc $\text{Im}(f) = \mathbb{R}^2$. Ainsi :

une base de
$$\text{Im}(f)$$
 est (par exemple) $((1,0),(0,1))$ et $\dim(\text{Im}(f))=2$

Remarque: on peut aussi calculer directement l'image de f de la façon suivante. Comme $(1, X, X^2)$ est une base de $\mathbb{R}_2[X]$, on a :

$$Im(f) = Vect(f(1), f(X), f(X^2)) = \dots$$

3. L'application f est-elle bijective?

Comme $\dim(\operatorname{Ker}(f)) = 1$, on a en particulier $\operatorname{Ker}(f) \neq \{0_{\mathbb{R}_2[X]}\}$ et donc f n'est pas injective. En particulier :

l'application f n'est pas injective

COMMENTAIRE

En fait, il n'est pas nécessaire d'utiliser ce qui précède pour démontrer que f n'est pas bijective. Si f est bijective, alors les espaces vectoriels de départ et d'arrivée sont nécessairement de même dimension, ce qui n'est pas le cas. Donc f n'est pas bijective.

Exercice 6 (C1-C3-C4-C5-C6-C7) $\ \ \ \$ Soient $n \in \mathbb{N} \setminus \{0,1\}$ et f l'endomorphisme de \mathbb{R}^n

dont la matrice dans la base canonique (e_1, \dots, e_n) de \mathbb{R}^n est $A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$.

1. Déterminer l'image de f. Comme (e_1, \ldots, e_n) est une base de \mathbb{R}^n , on a :

$$\operatorname{Im}(f) = \operatorname{Vect}(f(e_1), f(e_2), \dots, f(e_n)) = \operatorname{Im}(f) = (e_1 + \dots + e_n, e_1)$$

car pour tout $k \in [2, n]$, on a $f(e_k) = e_1$.

Remarque: bien sûr, $e_1 = (1, 0, ..., 0)$ et $e_1 + ... + e_n = (1, 1, ..., 1)$.

2. Quelle est la dimension du noyau de f? En déduire Ker(f). Comme \mathbb{R}^n est de dimension finie (égale à n), on sait d'après le théorème du rang que :

$$\dim(\mathbb{R}^n) = n = \dim(\mathrm{Ker}(f)) + \dim(\mathrm{Im}(f))$$

Déterminons la dimension de l'image de f. Une famille génératrice de $\operatorname{Im}(f)$ est $(e_1 + \cdots + e_n, e_1)$ et cette famille est libre car elle est constituée de deux vecteurs non colinéaires (en effet, $n \geq 2$). Donc cette famille est une base de l'image de f, ce qui implique que $\dim(\operatorname{Im}(f)) = 2$. Par conséquent :

$$\dim(\operatorname{Ker}(f) = n - 2$$

Pour tout $k \in [3, n]$, on a $f(e_k) = f(e_2)$ et donc $f(e_k - e_2) = 0_{\mathbb{R}^n}$ (par linéarité de f), ce qui signifie que $e_k - e_2 \in \text{Ker}(f)$. Montrons que la famille $(e_3 - e_2, \dots, e_n - e_2)$ est libre. Soit $(\alpha_3, \dots, \alpha_n) \in \mathbb{R}^{n-2}$ tel que $\sum_{k=3}^n \alpha_k(e_k - e_2) = 0_{\mathbb{R}^n}$. Par linéarité de la somme, on obtient :

$$-(\alpha_3 + \dots + \alpha_n)e_1 + \sum_{k=3}^n \alpha_k e_k = 0_{\mathbb{R}^n}$$

Or la famille (e_1, \ldots, e_n) est libre donc :

$$\begin{cases} -(\alpha_3 + \dots + \alpha_n) = 0 \\ \forall k \in [3, n], \ \alpha_k = 0 \end{cases}$$

Ainsi, $(e_3 - e_2, \dots, e_n - e_2)$ est libre dans Ker(f) qui est de dimension n-2. Comme cette famille, comporte n-2 vecteurs, on peut conclure que :

la famille $(e_3 - e_2, \dots, e_n - e_2)$ est une base de Ker(f)

- 3. On pose $\varepsilon = e_1 + \cdots + e_n$ et $F = \text{Vect}(e_1, \varepsilon)$.
 - (a) Justifier que F est de dimension 2 puis montrer que l'application g définie sur F par g(x) = f(x) pour tout $x \in F$ est un endomorphisme de F.

On a vu à la question 1. que $\operatorname{Im}(f) = \operatorname{Vect}(e_1, \varepsilon) = F$ et que l'image de f est de dimension 2. Donc $\dim(F) = 2$.

L'application g est linéaire puisque f est linéaire. Il reste à démontrer que g est bien définie, c'est-à-dire à valeurs dans F. Soit $x \in F$. Il existe alors $(a,b) \in \mathbb{R}^2$ tel que $x = ae_1 + b\varepsilon$. Par linéarité de f, on a :

$$g(x) = ag(e_1) + bg(\varepsilon) = af(e_1) + bf(\varepsilon)$$

$$= a\varepsilon + bf(e_1) + bf(e_2) + \dots + bf(e_n)$$

$$= a\varepsilon + b\varepsilon + be_1 + \dots + be_1$$

$$= (a+b)\varepsilon + b(n-1)e_1 \in F$$

Finalement, g est un endomorphisme de F.

(b) Quelle est la matrice de g dans la base (e_1, ε) de F? On a $g(e_1) = \varepsilon$ et $g(u) = \varepsilon + (n-1)e_1$ d'après ce qui précède (prendre a = 0 et b = 1 dans le calcul ci-dessus). Donc :

la matrice de
$$g$$
 dans le base (e_1, ε) de F est $B = \begin{pmatrix} 0 & n-1 \\ 1 & 1 \end{pmatrix}$

4. Déterminer A^2 .

La matrice A^2 est la matrice canoniquement associée à l'endomorphisme f^2 de \mathbb{R}^n . Pour déterminer cette matrice, il suffit donc de calculer $f^2(e_k)$ pour tout $k \in [1, n]$. D'une part :

$$f^{2}(e_{1}) = f(f(e_{1})) = f(e_{1} + \dots + e_{n}) = f(e_{1}) + \sum_{k=2}^{n} f(e_{k})$$
$$= \sum_{k=1}^{n} e_{k} + (n-1)e_{1}$$
$$= ne_{1} + \sum_{k=2}^{n} e_{k}$$

et d'autre part, pour tout $k \in [2, n]$:

$$f^{2}(e_{k}) = f(f(e_{k})) = f(e_{1}) = e_{1} + \dots + e_{n}$$

donc:

$$A^{2} = \begin{pmatrix} n & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}$$

Exercice 7 (C2-C3-C6) On considère l'application :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ (x_1, \dots, x_n) & \longmapsto & \sum_{k=1}^n x_k \end{array} \right.$$

On note (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n .

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$. Montrons que $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$.
 - Tout d'abord, pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$, la somme $f(x_1, \ldots, x_n) = \sum_{k=1}^n x_k$ est un nombre réel. On a donc $f(\mathbb{R}^n) \subset \mathbb{R}$.
 - Montrons que f est linéaire. Soient $\lambda \in \mathbb{R}$, $X = (x_1, \dots, x_n) \in \mathbb{R}^n$ et $Y = (y_1, \dots, y_n)$. Montrons qu'on a l'égalité $f(X + \lambda Y) = f(X) + \lambda f(Y)$. On a :

$$f(X + \lambda Y) = f(x_1 + \lambda y_1, \dots, x_n + \lambda y_n) = \sum_{k=1}^n (x_k + \lambda y_k)$$

$$= \sum_{k=1}^n x_k + \lambda \sum_{k=1}^n y_k \qquad \text{(par linéarité de la somme)}$$

$$= f(X) + \lambda f(Y)$$

2. Justifier que f est surjective. Quelle est la dimension du noyau de f? Soit $y \in \mathbb{R}$. Posons $u = (y, 0, \dots, 0) \in \mathbb{R}^n$. Alors:

$$f(u) = y + 0 + \dots + 0$$

Donc u est un antécédent de y par f dans \mathbb{R}^n . On vient de montrer que tout élément de \mathbb{R} admet au moins un antécédent par f dans \mathbb{R}^n donc :

l'application
$$f$$
 est surjective

L'espace vectoriel de départ est de dimension finie donc on peut appliquer le théorème du rang et on a :

$$\dim(\operatorname{Ker}(f)) = \dim(\mathbb{R}^n) - \dim(\operatorname{Im}(f)) = n - 1$$

puisque $\text{Im}(f) = \mathbb{R}$ (l'application f étant surjective).

- 3. Montrer qu'une base de $\operatorname{Ker}(f)$ est $(e_1 e_n, e_2 e_n, \dots, e_{n-1} e_n)$. La famille $(e_1 - e_n, \dots, e_{n-1} - e_n)$, notée \mathcal{B} , est constituée de n-1 vecteurs et on sait que $\operatorname{dim}(\operatorname{Ker}(f)) = n-1$. Pour montrer que \mathcal{B} est une base de $\operatorname{Ker}(f)$, il suffit donc de montrer que les éléments de \mathcal{B} appartiennent au noyau de f et que \mathcal{B} est une base de $\operatorname{Ker}(f)$.
 - Soit $i \in [1, n-1]$. Toutes les coordonnées du vecteur $e_i e_n$ sont nulles sauf exactement deux : la i^e vaut 1 et la n^e vaut -1. Par conséquent, $f(e_i e_n) = 1 1 = 0$. Ainsi, $e_i e_n \in \text{Ker}(f)$.
 - Montrons que la famille \mathcal{B} est libre. Soit $(\alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{R}^{n-1}$ tel que $\sum_{i=1}^{n-1} \lambda_i (e_i e_n) = 0_{\mathbb{R}^n}$. Par linéarité de la somme, cette égalité se réécrit :

$$\sum_{i=1}^{n-1} \lambda_i e_i - \left(\sum_{i=1}^{n-1} \lambda_i\right) e_n = 0_{\mathbb{R}^n}$$

Or on sait que la famille (e_1, \ldots, e_n) est libre (puisqu'il s'agit d'une base de \mathbb{R}^n) donc :

$$\forall i \in [1, n-1], \ \lambda_i = 0$$
 et $\sum_{i=1}^{n-1} \lambda_i = 0$

Pour tout $i \in [1, n-1]$, on a bien $\lambda_i = 0$ donc la famille \mathcal{B} est libre. Finalement :

la famille
$$\mathcal{B} = (e_1 - e_n, \dots, e_{n-1} - e_n)$$
 est une base de $\operatorname{Ker}(f)$

Exercice 8 (C2-C3-C6) \square Soit $n \in \mathbb{N}^*$. On considère l'application :

$$\Phi: \left\{ \begin{array}{ccc} \mathbb{C}_n[X] & \longrightarrow & \mathbb{C}_n[X] \\ \mathrm{P} & \longmapsto & \mathrm{P}(X+2) - \mathrm{P}(X) \end{array} \right.$$

- 1. Montrer que Φ est un endomorphisme de $\mathbb{C}_n[X]$.
 - Soit $P \in \mathbb{C}_n[X]$. Les polynômes P(X+2) et P(X) sont de degrés inférieurs ou égaux à n donc la différence P(X+2) P(X) est de degré inférieur ou égal à n, c'est-à-dire $\Delta(P) \in \mathbb{C}_n[X]$. Donc on a bien $\Delta(\mathbb{C}_n[X]) \subset \mathbb{C}_n[X]$
 - Montrons que Δ est linéaire. Soient $\lambda \in \mathbb{R}$ et $(P,Q) \in \mathbb{C}_n[X]^2$. On a :

$$\Delta(\lambda P + Q) = (\lambda P + Q)(X + 1) - (\lambda P + Q)(X)$$

$$= \lambda P(X + 1) + Q(X + 1) - \lambda P(X) - Q(X)$$

$$= \lambda (P(X + 1) - P(X)) + Q(X + 1) - Q(X)$$

$$= \lambda \Delta(P) + \Delta(Q)$$

Finalement:

 Δ est un endomorphisme de $\mathbb{C}_n[X]$

2.(a) Soit $P \in \text{Ker}(\Phi)$. On suppose que $\deg(P) \geqslant 1$. En utilisant le théorème de D'Alembert-Gauss, montrer que P admet une infinité de racines. Soit $P \in \text{Ker}(\Phi)$ tel que $\deg(P) \geqslant 1$. On a donc $\Phi(P) = \mathbb{Q}_{\mathbb{Z}_n[X]}$, c'est-à-dire $P(X+2) = \mathbb{Q}_{\mathbb{Z}_n[X]}$

Soit $P \in \text{Ker}(\Phi)$ tel que $\deg(P) \geqslant 1$. On a donc $\Phi(P) = 0_{\mathbb{C}_n[X]}$, c'est-à-dire P(X+2) = P(X). Autrement dit, pour tout $z \in \mathbb{C}$, on a l'égalité P(z+2) = P(z). Comme P n'est pas constant, on sait d'après le théorème de D'Alembert-Gauss qu'il admet au moins une racine complexe que l'on note z_0 . On a donc :

$$P(z_0 + 2) = P(z_0) = 0$$
 et $P(z_0 + 4) = P(z_0 + 2) = 0$

et (par une récurrence immédiate), on trouve que $P(z_0 + 2n) = 0$ pour tout entier naturel n. Les nombres complexes $z_0 + 2n$ (où $n \in \mathbb{N}$) sont deux à deux distinctes et sont des racines de P. Le polynôme P admet donc une infinité de racines complexes. Ainsi :

si $P \in \text{Ker}(\Phi)$ est tel que $\deg(P) \geqslant 1$, alors P a une infinité de racines

(b) Conclure que $Ker(\Phi) = \mathbb{C}_0[X]$.

On raisonne par double inclusion.

- Si $P \in \mathbb{C}_0[X]$, alors P est un polynôme constant. On a donc P(X+2) = P(X), c'està-dire $\Phi(P) = 0_{\mathbb{C}_n[X]}$, soit encore $P \in \text{Ker}(\Phi)$. D'où l'inclusion $\mathbb{C}_0[X] \subset \text{Ker}(\Phi)$.
- Soit $P \in \text{Ker}(\Phi)$. Montrons que $P \in \mathbb{C}_0[X]$. Par l'absurde, si P n'est pas un polynôme constant, alors $\deg(P) \geqslant 1$ et donc P a une infinité de racines d'après la question précédente. Or le seul polynôme admettant une infinité de racines est le polynôme nul donc $P = 0_{\mathbb{C}_n[X]}$. On obtient une absurdité car on a supposé que P n'était pas un polynôme constant. Finalement, $P \in \mathbb{C}_0[X]$. D'où l'inclusion $\text{Ker}(\Phi) \subset \mathbb{C}_0[X]$.

Par double inclusion, on a bien démontré l'égalité :

$$\boxed{\mathrm{Ker}(\Phi) = \mathbb{C}_0[X]}$$

(c) En déduire que $\operatorname{Im}(\Phi) = \mathbb{C}_{n-1}[X]$.

L'application Φ est linéaire et l'espace de départ $\mathbb{C}_n[X]$ est de dimension finie (égale à n+1). D'après le théorème du rang, on a donc :

$$\dim(\mathbb{C}_n[X]) = \dim(\operatorname{Ker}(\Phi)) + \dim(\operatorname{Im}(\Phi))$$

Comme $\operatorname{Ker}(\Phi)=\mathbb{C}_0[X]$ est de dimension 1, l'égalité précédente se réécrit :

$$\dim(\operatorname{Im}(\Phi)) = n$$

Pour conclure, montrons que $\operatorname{Im}(\Phi) \subset \mathbb{C}_{n-1}[X]$. Soit $P \in \mathbb{C}_n[X]$ un polynôme non constant. Notons $d \in \mathbb{N}^*$ son degré et cX^d son monôme de plus haut degré (où $d \in \mathbb{C}^*$). Le monôme de plus haut degré de $\Delta(P)$ est le monôme de plus haut degré issu de la différence $c(X+2)^d - cX^d$. Or, d'après la formule du binôme de Newton, on a :

$$c(X+2)^{d} - cX^{d} = c\sum_{k=0}^{d} \binom{d}{k} 2^{d-k} X^{k} - cX^{d} = 2cdX^{d-1} + c\sum_{k=0}^{d-2} \binom{d}{k} 2^{d-k} X^{k}$$

$$de \operatorname{degré} \leqslant d-2$$

Comme $cd \neq 0$, on a $\deg(\Delta(P)) = d - 1 = \deg(P) - 1$. Ainsi, on a l'inclusion $\operatorname{Im}(\Phi) \subset \mathbb{C}_{n-1}[X]$ et comme ces deux espaces vectoriels sont de même dimension d'après ce qui précède, on a bien l'égalité :

$$\operatorname{Im}(\Phi) = \mathbb{C}_{n-1}[X]$$

Exercice 9 (C2-C3-C4-C6-C7) $\ \, \Box \ \,$ Soit Φ l'application qui à tout polynôme $P \in \mathbb{R}[X]$ associe le polynôme :

$$\Phi(P) = X^2 P' - 2(X - 1) P$$

1. Question préliminaire : résoudre dans \mathbb{R}_{+}^{*} l'équation différentielle :

$$x^2y' - 2(x-1)y = 0$$

On note (E) cette équation différentielle. Sur \mathbb{R}_+^* , on a l'équivalence (puisque $x^2 \neq 0$):

$$\forall x > 0,$$
 $x^2 y'(x) - 2(x-1)y(x) = 0 \iff y'(x) - 2\left(\frac{1}{x} - \frac{1}{x^2}\right)y(x) = 0$

Donc (E) est une équation différentielle linéaire du premier ordre homogène sur \mathbb{R}_+^* . Une primitive de la fonction (continue) $x \longmapsto -2\left(\frac{1}{x}-\frac{1}{x^2}\right) \operatorname{sur} \mathbb{R}_+^*$ est $x \longmapsto -2\left(\ln(x)+\frac{1}{x}\right)$. On en déduit donc que l'ensemble des solutions de (E) sur \mathbb{R}_+^* est :

$$S = \left\{ x \longmapsto C e^{2\left(\ln(x) + \frac{1}{x}\right)} \mid C \in \mathbb{R} \right\} = \left\{ x \longmapsto Cx^2 e^{\frac{2}{x}} \mid C \in \mathbb{R} \right\}$$

- 2. Montrer que Φ est un endomorphisme de $\mathbb{R}[X]$.
 - Soit $P \in \mathbb{R}[X]$. On sait que la dérivée d'un polynôme, une somme et un produit de polynômes est un polynômes donc $\Phi(P) \in \mathbb{R}[X]$.
 - Montrons que Φ est linéaire. Soient $\lambda \in \mathbb{R}$ et $(P,Q) \in (\mathbb{R}[X])^2$. On a (en utilisant la linéarité de la dérivation à la deuxième ligne) :

$$\begin{split} \Phi(\lambda P + Q) &= X^2 (\lambda P + Q)' - 2(X - 1)(\lambda P + Q) \\ &= X^2 (\lambda P' + Q') - 2\lambda (X - 1)P - 2(X - 1)Q \\ &= \lambda (X^2 P' - 2(X - 1)P) + (X^2 Q' - 2(X - 1)Q) \\ &= \lambda \Phi(P) + \Phi(Q) \end{split}$$

Donc Φ est linéaire.

Finalement:

 Φ est un endomorphisme de $\mathbb{R}[X]$

3. Déterminer le noyau de Φ . Conclure.

Soit $P \in \mathbb{R}[X]$. Alors:

$$P \in \operatorname{Ker}(\Phi) \iff \Phi(P) = 0_{\mathbb{R}[X]}$$

 $\iff P \text{ est solution de l'équation différentielle } (E) \text{ sur } \mathbb{R}_+^*$
 $\iff P \in \mathcal{S} \cap \mathbb{R}[X]$

On est donc ramené à déterminer les fonctions polynomiales de la forme

 $P: x \longmapsto Cx^2 e^{\frac{2}{x}}$. Supposons que P soit un polynôme et que $C \neq 0$. Pour tout $x \in \mathbb{R}_+^*$, on a :

$$P(x) = C \frac{e^{\frac{2}{x}}}{\frac{1}{x^2}}$$
 donc $\lim_{x \to 0^+} P(x) = \lim_{y \to +\infty} C \frac{e^{2y}}{y^2} = \pm \infty$

suivant le signe de C (et par croissances comparées), ce qui est absurde (la limite de P est 0 est P(0) qui est un nombre réel si P est un polynôme). Donc, une fonction polynomiale appartenant à S est nécessairement telle que C=0. Il s'agit donc du polynôme nul. Finalement, $Ker(\Phi) = \{0_{\mathbb{R}[X]}\}$ et donc Φ est injective.

- 4. Soit $n \in \mathbb{N}$. Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$ si et seulement si n = 2. On raisonne par double implication.
 - Supposons que Φ soit un endomorphisme de $\mathbb{R}_n[X]$. Alors $\Phi(X^n) \in \mathbb{R}_n[X]$. Or :

$$\Phi(X^n) = nX^{n+1} - 2(X-1)X^n = (n-2)X^{n+1} + 2X^n$$

Pour que $\Phi(X^n) \in \mathbb{R}_n[X]$, il faut donc que n-2=0 c'est-à-dire que n=2.

— Réciproquement, supposons que n=2. On sait déjà que Φ est linéaire. Il reste à vérifier que $\Phi(\mathbb{R}_2[X]) \subset \mathbb{R}_2[X]$. Soit $P=aX^2+bX+c \in \mathbb{R}_2[X]$ (où $(a,b,c) \in \mathbb{R}^3$). Alors :

$$\Phi(P) = X^{2}(2aX + b) - 2(X - 1)(aX^{2} + bX + c)$$

$$= 2aX^{3} + bX^{2} - 2aX^{3} - 2bX^{2} - 2cX + 2aX^{2} + 2bX + 2c$$

$$= (2a - b)X^{2} + (2b - 2c)X + 2c \in \mathbb{R}_{2}[X]$$

Donc Φ est un endomorphisme de $\mathbb{R}_2[X]$. Finalement :

 Φ est un endomorphisme de $\mathbb{R}_n[X]$ si et seulement si n=2

5. Montrer qu'il existe une base (P_1, P_2, P_3) de $\mathbb{R}_2[X]$ dans laquelle la matrice de Φ est :

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Déterminons la matrice M de Φ dans la base canonique $(1, X, X^2)$ de $\mathbb{R}_2[X]$. On a $\Phi(1) = 2 - 2X$,

$$\Phi(X) = X^2 - 2(X^2 - X) = 2X - X^2$$
 et $\Phi(X^2) = 2X^3 - 2(X^3 - X^2) = 2X^2$

On a donc
$$M = \begin{pmatrix} 2 & 0 & 0 \\ -2 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix}$$
.

— Soit $P_1 = a + bX + cX^2 \in \mathbb{R}_2[X]$. Alors:

$$\Phi(P_1) = 2P_1 \iff M \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 2 \begin{pmatrix} a \\ b \\ c \end{pmatrix} \iff \begin{cases} 2a & = 2a \\ -2a + 2b & = 2b \\ - b + 2c & = 2c \end{cases}$$
$$\iff a = b = 0$$
$$\iff P_1 = cX^2$$

Par exemple $P_1 = X^2$ est tel que $\Phi(P_1) = 2P_1$.

— De la même façon, soit $P_2 = a + bX + cX^2 \in \mathbb{R}_2[X]$. Alors :

$$\Phi(P_2) = P_1 + 2P_2 \iff M \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2a \\ 2b \\ 1 + 2c \end{pmatrix} \iff \begin{cases} 2a \\ -2a + 2b \\ -b + 2c = 1 + 2c \end{cases}$$
$$\iff a = 0 \text{ et } b = -1$$
$$\iff P_2 = -X + cX^2$$

Par exemple, $P_2 = -X + X^2$ est tel que $\Phi(P_2) = P_1 + 2P_2$.

— Enfin, avec les mêmes notations, on a :

$$\Phi(P_3) = P_2 + 2P_3 \iff M \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2a \\ -1 + 2b \\ 1 + 2c \end{pmatrix} \iff \begin{cases} 2a \\ -2a + 2b \\ -b + 2c = 1 + 2b \end{cases}$$

$$\iff a = \frac{1}{2} \text{ et } b = -1$$

$$\iff P_2 = \frac{1}{2} - X + cX^2$$

Par exemple, $P_2 = \frac{1}{2} - X + X^2$.

Pour conclure, il reste encore à montrer que la famille obtenue $\mathcal{B} = (P_1, P_2, P_3)$ est libre

(...). La matrice
$$A$$
 de Φ dans la base \mathcal{B} de $\mathbb{R}_2[X]$ est bien $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

COMMENTAIRE

Il n'est pas indispensable de déterminer la matrice M de Φ dans la base canonique pour répondre à cette question. On peut par exemple trouver P_1 en résolvant directement l'équation $\Phi(P_1) = 2P_1$ en utilisant l'expression de Φ et en remplaçant P_1 par $a + bX + cX^2$.

Exercice 10 Soient E un \mathbb{K} -espace vectoriel et $(f,g) \in \mathcal{L}(E)^2$. Les trois questions sont indépendantes.

1. Montrer que $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$ et $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$. Montrons que $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$. Soit $x \in \operatorname{Ker}(f)$. Alors $f(x) = 0_E$ et, comme f est linéaire,

$$f^2(x) = f(f(x)) = f(0_E) = 0_E$$

Donc $x \in \text{Ker}(f^2)$ d'où l'inclusion :

$$\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$$

Montrons que $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$. Soit $y \in \operatorname{Im}(f^2)$. Il existe alors $x \in E$ tel que $y = f^2(x)$. On a donc :

$$y = f(\underbrace{f(x)}_{\in E}) \in \operatorname{Im}(f)$$

d'où l'inclusion:

$$\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$$

- 2. Montrer que $f \circ g = 0_{\mathcal{L}(E)}$ si et seulement si $\mathrm{Im}(g) \subset \mathrm{Ker}(f)$. On raisonne par double implication.
 - Supposons que $f \circ g = 0_{\mathcal{L}(E)}$ et montrons que $\mathrm{Im}(g) \subset \mathrm{Ker}(f)$. Soit $y \in \mathrm{Im}(g)$. Il existe alors $x \in E$ tel que y = g(x). On a donc :

$$f(y) = f(g(x)) = (f \circ g)(x) = 0_{\mathcal{L}(E)}(x) = 0_E$$

Donc $y \in \text{Ker}(f)$ d'où l'inclusion $\text{Im}(g) \subset \text{Ker}(f)$.

• Réciproquement, supposons que $\operatorname{Im}(g) \subset \operatorname{Ker}(f)$ et montrons que $f \circ g = 0_{\mathcal{L}(E)}$, ce qui revient à dire que $(f \circ g)(x) = 0_E$ pour tout $x \in E$. Soit $x \in E$. Alors $(f \circ g)(x) = f(g(x))$. Or $g(x) \in \operatorname{Im}(g)$ et par hypothèse $\operatorname{Im}(g) \subset \operatorname{Ker}(f)$ donc $g(x) \in \operatorname{Ker}(f)$ et donc $f(g(x)) = 0_E$. Finalement, $f \circ g = 0_{\mathcal{L}(E)}$.

On a donc bien l'équivalence :

$$f \circ g = 0_{\mathcal{L}(E)} \iff \operatorname{Im}(g) \subset \operatorname{Ker}(f)$$

3. On dit qu'un sous-ensemble A de E est invariant par une application linéaire $h \in \mathcal{L}(E)$ si $h(A) \subset A$.

Montrer que si f et g commutent, c'est-à-dire si $f \circ g = g \circ f$, alors $\operatorname{Ker}(g)$ et $\operatorname{Im}(g)$ sont invariants par f.

Montrons que Ker(g) est invariant par f. Soit $x \in Ker(g)$. Montrons que $f(x) \in Ker(g)$. Comme f et g commutent, on a :

$$g(f(x)) = (g \circ f)(x) = (f \circ g)(x) = f(g(x)) = f(0_E) = 0_E$$

car $x \in \text{Ker}(g)$ par hypothèse et car f est linéaire. Ainsi, $f(x) \in \text{Ker}(g)$ et donc Ker(g) est invariant par f.

Montrons que Im(g) est invariant par f. Soit $y \in \text{Im}(g)$. Montrons que $f(y) \in \text{Im}(g)$. Par hypothèse, il existe $x \in E$ tel que y = g(x). On a (puisque f et g commutent):

$$f(y) = f(g(x)) = (f \circ g)(x) = (g \circ f)(x) = g(f(x)) \in \text{Im}(g)$$

et donc Im(q) est invariant par f.

Exercice 11 (C5-C6-C7-C9) \square Soit $P = \begin{pmatrix} -4 & 3 \\ -6 & 5 \end{pmatrix}$. On considère l'application :

$$u: \left\{ \begin{array}{ccc} \mathcal{M}_2(\mathbb{R}) & \longrightarrow & \mathcal{M}_2(\mathbb{R}) \\ M & \longmapsto & PM \end{array} \right.$$

1. Montrer que u est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.

L'application est bien définie car le produit de deux matrices de $\mathcal{M}_2(\mathbb{R})$ appartient bien à $\mathcal{M}_2(\mathbb{R})$ (on a donc $u(\mathcal{M}_2(\mathbb{R})) \subset \mathcal{M}_2(\mathbb{R})$).

Montrons maintenant que u est linéaire. Soient $\lambda \in \mathbb{R}$ et $(M, N) \in \mathcal{M}_2(\mathbb{R})^2$. Par distributivité du produit matriciel par rapport à l'addition, on a :

$$u(\lambda M + N) = P(\lambda M + N) = \lambda PM + PN = \lambda u(M) + u(N)$$

donc u est linéaire. Finalement :

u est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$

2. On définit les quatre matrices de $\mathcal{M}_2(\mathbb{R})$ suivantes :

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \qquad E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \qquad E_{2,1} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \text{ et } E_{2,2} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

On pose $\mathcal{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$. Vérifier que \mathcal{B} est une base de $\mathcal{M}_2(\mathbb{R})$. Étudions la liberté de \mathcal{B} . Soit $(a, b, c, d) \in \mathbb{R}^4$. On résout :

$$a \, \mathbf{E}_{1,1} + b \, \mathbf{E}_{1,2} + c \, \mathbf{E}_{2,1} + d \, \mathbf{E}_{2,2} = 0_{\mathcal{M}_2(\mathbb{R})} \iff a \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} + c \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \iff \dots \iff a = b = c = d = 0$$

La famille \mathcal{B} est donc libre dans $\mathcal{M}_2(\mathbb{R})$. Or elle contient 4 vecteurs, ce qui coïncide avec la dimension de $\mathcal{M}_2(\mathbb{R})$. Donc :

$$\mathcal{B}$$
 est une base de $\mathcal{M}_2(\mathbb{R})$

3. Donner la matrice de u dans la base \mathcal{B} de $\mathcal{M}_2(\mathbb{R})$. Déterminer $\mathrm{Im}(u)$ et $\mathrm{Ker}(u)$. On a :

$$u(\mathbf{E}_{1,1}) = PE_{1,1} = \begin{pmatrix} -4 & 3 \\ -6 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix} = 2\,\mathbf{E}_{1,1}$$

et, de même, $u(E_{1,2}) = 2E_{1,2}$, $u(E_{2,1}) = -E_{2,1}$ et $u(E_{2,2}) = -E_{2,2}$. Donc :

la matrice
$$A$$
 de u exprimée dans la base \mathcal{B} de $\mathcal{M}_2(\mathbb{R})$ est $A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

La matrice A est diagonale et tous ses éléments diagonaux sont non nuls. Son rang est donc maximal. Ceci implique que A et bijective et donc que u est un automorphisme (c'est-à-dire un endomorphisme bijectif) de $\mathcal{M}_2(\mathbb{R})$. Par conséquent :

$$\operatorname{Ker}(u) = \{0_{\mathcal{M}_2(\mathbb{R})}\}$$
 et $\operatorname{Im}(u) = \mathcal{M}_2(\mathbb{R})$

4. Donner la matrice canoniquement associée à u. Déterminer le lien avec la matrice obtenue à la question précédente.

On a (on calcule les images de chaque vecteur de la base canonique de $\mathcal{M}_2(\mathbb{R})$ par l'application u):

$$P\begin{pmatrix}1&0\\0&0\end{pmatrix} = \begin{pmatrix}-4&0\\-6&0\end{pmatrix}, \quad P\begin{pmatrix}0&1\\0&0\end{pmatrix} = \begin{pmatrix}0&-4\\0&-6\end{pmatrix}, \quad P\begin{pmatrix}0&0\\1&0\end{pmatrix} = \begin{pmatrix}3&0\\5&0\end{pmatrix} \quad \text{et} \quad P\begin{pmatrix}0&0\\0&1\end{pmatrix} = \begin{pmatrix}0&0\\0&1\end{pmatrix} = \begin{pmatrix}0&0\\0&1\end{pmatrix}$$

La matrice B de u exprimée dans la base canonique $C = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ est donc :

$$B = \begin{pmatrix} -4 & 0 & 3 & 0 \\ 0 & -4 & 0 & 3 \\ -6 & 0 & 5 & 0 \\ 0 & -6 & 0 & 5 \end{pmatrix}$$

La matrice de passage de la base canonique \mathcal{C} de $\mathcal{M}_2(\mathbb{R})$ vers la base \mathcal{B} , notée Q, est :

$$Q = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

On a alors l'égalité suivante d'après le cours :

$$B = QAQ^{-1}$$

Exercice 12 (C2-C3-C4-C5-C6) $\ \ \,$ On considère les fonctions définies sur \mathbb{R} par, pour tout $x \in \mathbb{R}$,

$$f_1(x) = \cos(x),$$
 $f_2(x) = \sin(x),$ $f_3(x) = x\cos(x)$ et $f_4(x) = x\sin(x)$

On pose $E = Vect(f_1, f_2, f_3, f_4)$.

1. Montrer que (f_1, f_2, f_3, f_4) est une base de E.

Par définition, la famille (f_1, f_2, f_3, f_4) est génératrice de E. Étudions sa liberté. Soit $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$. On suppose que $\alpha f_1 + \beta f_2 + \gamma f_3 + \delta f_4 = 0_E$. Alors :

$$\forall x \in \mathbb{R}, \qquad \alpha f_1(x) + \beta f_2(x) + \gamma f_3(x) + \delta f_4(x) = 0$$

c'est-à-dire:

$$\forall x \in \mathbb{R}, \qquad \alpha \cos(x) + \beta \sin(x) + \gamma x \cos(x) + \delta x \sin(x) = 0$$

En remplaçant x par 0, on obtient $\alpha = 0$. Ensuite, en remplaçant x par π , il vient (puisque $\sin(\pi) = 0$) : $\gamma \pi \times (-1) = 0$, c'est-à-dire $\gamma = 0$. Il reste :

$$\forall x \in \mathbb{R}, \qquad \beta \sin(x) + \delta x \sin(x) = 0$$

Pour les valeurs $x = \frac{\pi}{2}$ et $x = -\frac{\pi}{2}$, on obtient le système :

$$\begin{cases} \beta + \frac{\delta \pi}{2} = 0 \\ -\beta + \frac{\delta \pi}{2} = 0 \end{cases}$$

dont la résolution fournit $\beta = \delta = 0$. La famille (f_1, f_2, f_3, f_4) est donc libre. Finalement :

la famille (f_1, f_2, f_3, f_4) est une base de E

- 2. On considère l'opérateur de dérivation $d: f \mapsto f'$.
 - (a) Montrer que d est un endomorphisme de E.
 - Tout d'abord, l'application d est bien définie car les éléments de E sont des fonctions dérivables sur \mathbb{R} (comme combinaisons linéaires des fonctions dérivables f_1 , f_2 , f_3 , f_4). Le caractère linéaire de d provient simplement de la linéarité de la dérivation (c'est du cours).
 - Il reste à justifier que si $f \in E$, alors $d(f) \in E$. Soit $f \in E$. Il existe alors $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ tel que $f = \alpha f_1 + \beta f_2 + \gamma f_3 + \delta f_4$. Par linéarité de la dérivation, on a :

$$d(f) = \alpha f_1' + \beta f_2' + \gamma f_3' + \delta f_4'$$

et donc:

$$\forall x \in \mathbb{R}, \qquad d(f)(x) = -\alpha \sin(x) + \beta \cos(x) + \gamma \cos(x) - \gamma x \sin(x) + \delta \sin(x) + \delta x \cos(x)$$
$$= (\beta + \gamma) \cos(x) + (\delta - \alpha) \sin(x) + \delta x \cos(x) - \gamma x \sin(x)$$
$$= (\beta + \gamma) f_1(x) + (\delta - \alpha) f_2(x) + \delta f_3(x) - \gamma f_4(x)$$

et donc:

$$d(f) = (\beta + \gamma)f_1 + (\delta - \alpha)f_2 + \delta f_3 - \gamma f_4 \in E$$

car d(f) s'exprime comme combinaison linéaire des fonctions f_1 , f_2 , f_3 et f_4 . Finalement:

d est un endomorphisme de E

(b) Écrire la matrice D de d dans la base (f_1, f_2, f_3, f_4) de E. D'après le calcul précédent (pour $d(f_1)$ par exemple, prendre $\alpha = 1$ et $\beta = \gamma = \delta = 0$), on a $d(f_1) = -f_2$, $d(f_2) = f_1$, $d(f_3) = f_1 - f_4$ et $d(f_4) = f_2 + f_3$ donc:

la matrice de
$$d$$
 dans la base (f_1, f_2, f_3, f_4) de E est $D = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$

(c) Montrer que D est inversible et donner son inverse.

Soit
$$\begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{R})$$
. On résout l'équation $D \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$ d'inconnue $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{R})$:

$$D\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix} \iff \begin{cases} & y + z & = X & L_1 \\ -x & + t = Y & L_2 \\ & t = Z & L_3 \\ & -z & = T & L_3 \end{cases}$$

$$\iff \begin{cases} & y & = X + T & L_1 \\ x & = -Y + Z & L_2 \\ & t = Z & L_3 \\ & z & = -T & L_3 \end{cases}$$

Le système obtenu est de Cramer (il admet bien une unique solution) donc la matrice D est inversible. De plus :

$$D\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix} \iff \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

On a donc:

$$D^{-1} = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Exercice 13 (C2-C3-C6) $\ \ \ \$ On note E le \mathbb{R} -espace vectoriel $\mathcal{C}(\mathbb{R},\mathbb{R})$ des fonctions continues sur \mathbb{R} à valeurs réelles. On considère l'application Φ définie sur E qui à toute fonction f de E associe la fonction F définie par F(0) = f(0) et par :

$$\forall x \in \mathbb{R}^*, \qquad F(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$$

- 1. Montrer que $\Phi \in \mathcal{L}(E)$.
 - Commençons par justifier que l'application Φ est bien définie. Soit $f \in E$. La fonction f étant continue sur \mathbb{R} , elle y admet des primitives. En particulier, la primitive de f qui s'annule en 0 est la fonction :

$$G: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_0^x f(t) \, \mathrm{d}t \end{array} \right.$$

La fonction G est dérivable et donc continue sur \mathbb{R} . Comme la fonction $x \mapsto \frac{1}{x}$ est continue sur \mathbb{R}^* , on peut en déduire que $\Phi(f)$ est continue sur \mathbb{R}^* . Il reste donc à établir la continuité en 0. Pour tout $x \in \mathbb{R}^*$, on a $\Phi(f)(x) = \frac{G(x)}{x}$. Or on sait que la fonction G est dérivable en 0 (et que G(0) = 0) de nombre dérivé en 0 égal à f(0) donc :

$$\lim_{x \to 0} \Phi(f)(x) = \lim_{x \to 0} \frac{G(x) - G(0)}{x - 0} = G'(0) = f(0) = \Phi(f)(0)$$

Ainsi, $\Phi(f)$ est continue sur \mathbb{R} et donc $\Phi(f) \in E$. Finalement, Φ est bien définie.

— Montrons maintenant que Φ est linéaire. Soient $\lambda \in \mathbb{R}$ et $(f,g) \in E^2$. Montrons que $\Phi(\lambda f + g) = \lambda \Phi(f) + \Phi(g)$, c'est-à-dire que :

$$\forall x \in \mathbb{R}, \qquad \Phi(\lambda f + g)(x) = \lambda \Phi(f)(x) + \Phi(g)(x)$$

On a d'une part :

$$\Phi(\lambda f + g)(0) = (\lambda f + g)(0) = \lambda f(0) + g(0) = \Phi(f)(0) + \Phi(g)(0)$$

et d'autre part, pour tout $x \in \mathbb{R}^*$ (par linéarité de l'intégrale) :

$$\Phi(\lambda f + g)(x) = \frac{1}{x} \int_0^x (\lambda f + g)(t) dt = \lambda \frac{1}{x} \int_0^x f(t) dt + \frac{1}{x} \int_0^x g(t) dt$$
$$= \lambda \Phi(f)(x) + \Phi(g)(x)$$

On a donc bien $\Phi(\lambda f + g) = \lambda \Phi(f) + \Phi(g)$. Finalement :

 Φ est un endomorphisme de E

2. Justifier que, pour tout $f \in E$, la fonction $\Phi(f)$ est dérivable sur \mathbb{R}^* . Que peut-on en déduire sur la surjectivité de Φ ?

Soit $f \in E$. Avec les notations de la question 1., on sait que :

$$\forall x \in \mathbb{R}^*, \qquad \Phi(f)(x) = \frac{G(x)}{x}$$

Or on a vu que la fonction G est dérivable sur \mathbb{R} (et donc sur \mathbb{R}^*), de même que la fonction inverse $x \longmapsto \frac{1}{x}$. Par produit :

la fonction
$$\Phi(f)$$
 est dérivable sur \mathbb{R}^*

Considérons la fonction $g: x \longmapsto |x+1|$. On a $g \in E$ car g est continue sur \mathbb{R} . Supposons que g admette un antécédent noté f par Φ dans E. D'après ce qui précède, la fonction $g = \Phi(f)$ serait alors dérivable sur \mathbb{R}^* et en particulier en -1, ce qui est absurde (en effet, la fonction $|\cdot|$ n'est pas dérivable en 0 donc, par composition, g n'est pas dérivable en -1). On peut donc en déduire que g n'admet pas d'antécédent par Φ dans E et donc :

l'application Φ n'est pas surjective

3. Étudier l'injectivité de Φ.

Déterminons le noyau de Φ . Soit $f \in E$. Alors :

$$f \in \text{Ker}(\Phi) \iff \Phi(f) = 0_E \iff \forall x \in \mathbb{R}, \ \Phi(f)(x) = 0$$

$$\iff \begin{cases} f(0) = 0 \\ \forall x \in \mathbb{R}^*, \ \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t = 0 \end{cases}$$

$$\iff \begin{cases} f(0) = 0 \\ \forall x \in \mathbb{R}^*, \ \int_{0}^x f(t) \, \mathrm{d}t = 0 \end{cases}$$

$$\iff \begin{cases} f(0) = 0 \\ \forall x \in \mathbb{R}^*, \ f'(0) = 0 \\ \forall x \in \mathbb{R}^*, \ G'(x) = f(x) = 0 \end{cases}$$

$$\implies f = 0_E$$

On a donc l'inclusion $\operatorname{Ker}(\Phi) \subset \{0_E\}$. L'inclusion réciproque est immédiate car $\operatorname{Ker}(\Phi)$ est un sous-espace vectoriel de E. Ainsi $\operatorname{Ker}(\Phi) = \{0_E\}$ et donc :

 Φ est injective

Exercice 14 (C2-C3) \square Soit E l'espace vectoriel des suites convergentes. On considère l'application T qui à une suite u de E associe la suite v définie par :

$$\forall n \in \mathbb{N}, \qquad v_n = u_{n+2} + 2u_{n+1} - 3u_n$$

- 1. Montrer que T est un endomorphisme de E.
 - Soit $u = (u_n)_{n \in \mathbb{N}} \in E$. Vérifions que $v = T(u) \in E$. Pour tout $n \in \mathbb{N}$, on a $v_n = u_{n+2} + 2u_{n+1} 3u_n$. Or la suite u est convergente donc les suites $(u_{n+1})_{n \in \mathbb{N}}$ et $(u_{n+2})_{n \in \mathbb{N}}$ sont aussi convergentes (de même limite que u). On sait qu'une combinaison linéaire de suites convergentes est convergente donc la suite v est convergente, c'est-à-dire $v \in E$.
 - Montrons maintenant que T est linéaire. Soient $\lambda \in \mathbb{R}$, $u = (u_n)_{n \in \mathbb{N}} \in E$ et $v = (v_n)_{n \in \mathbb{N}}$. Montrons que $T(\lambda u + v) = \lambda T(u) + T(v)$. On a :

$$\lambda u + v = (\lambda u_n + v_n)_{n \in \mathbb{N}}$$

donc, par définition de T:

$$T(\lambda u + v) = (\lambda u_{n+2} + v_{n+2}) + 2(\lambda u_{n+1} + v_{n+1}) - 3(\lambda u_n + v_n)$$

= $\lambda (u_{n+2} + 2u_{n+1} - 3u_n) + (v_{n+2} + 2v_{n+1} - 3v_n)$
= $\lambda T(u) + T(v)$

Donc T est linéaire.

Finalement:

T est un endomorphisme de E

2. Déterminer une base du noyau de T.

Soit $u = (u_n)_{n \in \mathbb{N}} \in E$. Alors:

$$u \in \text{Ker}(T) \iff T(u) = 0_E \iff \forall n \in \mathbb{N}, \ u_{n+2} + 2u_{n+1} - 3u_n = 0$$

$$\iff \exists (A, B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = A + B(-3)^n$$

puisque l'on dispose d'une suite récurrente linéaire d'ordre deux dont l'équation caractéristique $x^2+2x-3=0$ admet pour racines 1 et -3. Comme la suite $(u_n)_{n\in\mathbb{N}}$ appartient à E, elle converge. Or la suite $((-3)^n)_{n\in\mathbb{N}}$ est divergente donc :

$$\forall (A, B) \in \mathbb{R}^2, \qquad (A + B(-3)^n)_{n \in \mathbb{N}} \text{ converge} \iff B = 0$$

On en conclut donc que $\operatorname{Ker}(T) = \operatorname{Vect}((1)_{n \in \mathbb{N}})$. La famille $((1)_{n \in \mathbb{N}})$ est génératrice de $\operatorname{Ker}(T)$ et elle est libre car constituée d'une unique vecteur *non nul*. Ainsi :

une base du noyau de T est $((1)_{n\in\mathbb{N}})$

3. On étudie maintenant la surjectivité de T.

COMMENTAIRE

Ici, on ne peut pas utiliser le théorème du rang car l'espace des suites convergentes n'est pas de dimension finie.

(a) On suppose que la suite constante égale à 1 admet un antécédent $(u_n)_{n\in\mathbb{N}}$ par T dans E. Montrer que :

$$\forall n \in \mathbb{N}, \quad u_{n+2} + 3u_{n+1} = n + 1 + u_1 + 3u_0$$

Pour tout $k \in \mathbb{N}$, on a $u_{k+2} + 2u_{k+1} - 3u_k = 1$ et donc :

$$(u_{k+2} - u_{k+1}) + 3(u_{k+1} - u_n) = 1$$

Soit $n \in \mathbb{N}$. En sommant les égalités précédentes sur les entiers $k \in [0, n]$, on obtient (par linéarité de la somme) :

$$\sum_{k=0}^{n} (u_{k+2} - u_{k+1}) + 3\sum_{k=0}^{n} (u_{k+1} - u_k) = \sum_{k=0}^{n} 1 = n+1$$

c'est-à-dire, en calculant les deux sommes télescopiques :

$$\forall n \in \mathbb{N}, \qquad u_{n+2} + 3u_{n+1} = n + 1 + u_1 + 3u_0$$

(b) Conclure quant à la surjectivité de T.

Par hypothèse, la suite $(u_n)_{n\in\mathbb{N}}$ appartient à E donc elle converge. La suite $(u_{n+2} + 3u_{n+1})_{n\in\mathbb{N}}$ est donc convergente comme combinaison linéaire de suites convergente. D'après la question 3.(a), cela implique que la suite $(n+1+u_1+3u_0)_{n\in\mathbb{N}}$ est convergente, ce qui est absurde (elle diverge de limite $+\infty$). Ceci montre que la suite $(1)_{n\in\mathbb{N}}$ n'admet pas d'antécédent par T dans E et donc :

$$T$$
 n'est pas surjective

Exercice 15 (C5) 1. Écrire une fonction python qui calcule les racines d'un trinôme du second degré à coefficients réels.

Le nombre complexe i s'écrit 1j sous python. Il est disponible dans le module cmath. On obtient la fonction suivante :

```
from cmath import *
from math import *
def racines(a,b,c) : #equation ax^2+bx+c=0
    d = b**2-4*a*c
    if d > 0 :
        return (-b+sqrt(d))/(2*a), (-b-sqrt(d))/(2*a)
elif d == 0 :
        return -b/(2*a)
else :
    return (-b+1j*sqrt(-d))/(2*a), (-b-1j*sqrt(-d))/(2*a)
```

2. On pose $F = \{aX^4 + bX^3 + cX^2 + bX + a \mid (a, b, c) \in \mathbb{R}^3\}$. Montrer que F est un sousespace vectoriel de $\mathbb{R}_4[X]$.

Les éléments de F sont des polynômes de degrés inférieurs ou égaux à 4 donc $F \subset \mathbb{R}_4[X]$. De plus :

$$F = \left\{ a(X^4 + 1) + b(X^3 + X) + cX^2 \,\middle|\, (a, b, c) \in \mathbb{R}^3 \right\} = \text{Vect}(X^4 + 1, X^3 + X, X^2) \ \ (0.2)$$

donc F est un sous-espace vectoriel de $\mathbb{R}_4[X]$.

3. On pose $\mathcal{C} = (X^2, X + X^3, 1 + X^4)$. Montrer que \mathcal{C} est une base de F. La famille \mathcal{C} est une famille génératrice de F d'après l'égalité (0.2). Cette famille est de plus libre car elle est constituée de polynômes de degrés deux à deux distincts. Ainsi :

la famille \mathcal{C} est une base de F

- 4. Soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$ et $f : \mathbb{R}_2[X] \longrightarrow F$ l'application linéaire dont la matrice exprimée dans les bases \mathcal{B} est \mathcal{C} est $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - (a) Justifier que A est inversible et calculer A^{-1} . En utilisant la méthode usuelle (résolution d'un système), on obtient que la matrice A est effectivement inversible d'inverse :

$$A^{-1} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) Déterminer l'expression analytique de f. Soit $P = a + bX + cX^2 \in \mathbb{R}_2[X]$. La matrice des coordonnées de P exprimé dans la base \mathcal{B} est $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$. La matrice des coordonnées de f(P) exprimé dans la base \mathcal{C} de F est :

$$A \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a + 2c \\ b \\ c \end{pmatrix}$$

On a donc l'égalité $f(P) = (a+2c)X^2 + b(X+X^3) + c(1+X^4)$. L'expression analytique de f est donc :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & F \\ a+bX+cX^2 & \longmapsto & c+bX+(a+2c)X^2+bX^3+cX^4 \end{array} \right.$$

5. Soit $P \in \mathbb{R}_2[X]$ et Q = f(P). Montrer que pour tout $x \in \mathbb{R}^*$, on a :

$$Q(x) = x^2 P\left(x + \frac{1}{x}\right)$$

Soit $P = a + bX + cX^2 \in \mathbb{R}_2[X]$. Alors:

$$\forall x \in \mathbb{R}^*, \qquad x^2 P\left(x + \frac{1}{x}\right) = x^2 \left[a + b\left(x + \frac{1}{x}\right) + c\left(x + \frac{1}{x}\right)^2\right]$$

$$= x^2 \left(a + bx + \frac{b}{x} + cx^2 + 2c + \frac{c}{x^2}\right)$$

$$= ax^2 + bx^3 + bx + cx^4 + 2cx^2 + c$$

$$= f(P)(x)$$

d'après la question précédente. Ainsi :

$$\forall P \in \mathbb{R}_2[X], \ \forall x \in \mathbb{R}^*, \qquad f(P)(x) = x^2 P\left(x + \frac{1}{x}\right)$$

Exercice 16 (C2-C3) \Box On désigne par E l'espace vectoriel des suites réelles et :

$$F = \{(u_n)_{n \in \mathbb{N}} \in E \mid \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} - u_n \}$$

- 1. Démontrer que F est un sous-espace vectoriel de E.
 - La suite nulle $0_{\mathbb{R}^{\mathbb{N}}}$ appartient bien à F (puisque 0 = 0 0).
 - Soient $\lambda \in \mathbb{R}$, $(u_n)_{n \in \mathbb{N}} \in F$ et $(v_n)_{n \in \mathbb{N}} \in F$. Montrons que $\lambda(u_n)_{n \in \mathbb{N}} + (v_n)_{n \in \mathbb{N}} \in F$. On a:

$$\lambda(u_n)_{n\in\mathbb{N}} + (v_n)_{n\in\mathbb{N}} = (\lambda u_n + v_n)_{n\in\mathbb{N}}$$

et donc, comme $(u_n)_{n\in\mathbb{N}}\in F$ et $(v_n)_{n\in\mathbb{N}}\in F$, on a :

$$\forall n \in \mathbb{N}, \qquad \lambda u_{n+2} + v_{n+2} = \lambda (u_{n+1} - u_n) + (v_{n+1} - v_n)$$
$$= (\lambda u_{n+1} + v_{n+1}) - (\lambda u_n + v_n)$$

On a donc $\lambda(u_n)_{n\in\mathbb{N}} + (v_n)_{n\in\mathbb{N}} \in F$. Ainsi:

la suite F est un sous-espace vectoriel de E

- 2. Montrer que l'application $L: \left\{ \begin{array}{ccc} F & \longrightarrow & \mathbb{R}^2 \\ (u_n)_{n \in \mathbb{N}} & \longmapsto & (u_0, u_1) \end{array} \right.$ est un isomorphisme d'espaces vectoriels.
 - L'application est L est bien définie. Montrons qu'elle est linéaire. Soient $\lambda \in \mathbb{R}$, $(u_n)_{n \in \mathbb{N}} \in F$ et $(v_n)_{n \in \mathbb{N}} \in F$. On a :

$$L(\lambda(u_n)_{n\in\mathbb{N}} + (v_n)_{n\in\mathbb{N}}) = L((\lambda u_n + v_n)_{n\in\mathbb{N}}) = (\lambda u_0 + v_0, \lambda u_1 + v_1)$$

$$= \lambda(u_0, v_0) + (u_1, v_1)$$

$$= \lambda L((u_n)_{n\in\mathbb{N}}) + L((v_n)_{n\in\mathbb{N}})$$

L'application L est donc linéaire.

— Il reste encore à montrer que L est bijective. Déterminons le noyau de L. Soit $(u_n)_{n\in\mathbb{N}}\in F$. Alors :

$$(u_n)_{n\in\mathbb{N}}\in \operatorname{Ker}(L)\iff L((u_n)_{n\in\mathbb{N}})=(0,0)\iff u_0=0 \text{ et } u_1=0$$

Une récurrence à deux pas permet alors de montrer que pour tout $n \in N$, on a $u_n = 0$ (proposition notée \mathcal{P}_n) en utilisant la relation de récurrence vérifiée par la suite (car $(u_n)_{n\in\mathbb{N}} \in F$). Autrement dit, $\operatorname{Ker}(L) = \{0_{\mathbb{R}^N}\}$.

— Étudions maintenant l'injectivité de L. Soit $(a,b) \in \mathbb{R}^2$. Notons $(u_n)_{n \in \mathbb{N}}$ la suite réelle définie par $u_0 = a$, $u_1 = b$ et par $u_{n+2} = u_{n+1} - u_n$ pour tout $n \in \mathbb{N}$. Par définition, on a alors $(u_n)_{n \in \mathbb{N}} \in F$ et $L((u_n)_{n \in \mathbb{N}}) = (a,b)$. Donc L est surjective.

Finalement:

$$L: F \longrightarrow \mathbb{R}^2$$
 est un isomorphisme d'espaces vectoriels

- 3. Résoudre dans \mathbb{C} l'équation $r^2 r + 1 = 0$. On notera θ un argument de l'une des solutions. Les solutions de cette équation du second degré sont $e^{\pm i \frac{\pi}{3}}$. Par exemple, on a donc $\theta = \frac{\pi}{3}$.
- 4. On définit les suites $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ et $\beta = (\beta_n)_{n \in \mathbb{N}}$ par :

$$\forall n \in \mathbb{N}, \qquad \alpha_n = \cos(n\theta) \qquad \text{et} \qquad \beta_n = \sin(n\theta)$$

Démontrer que (α, β) est une base de F.

On sait que $L \in \mathcal{L}(F, \mathbb{R}^2)$ est un isomorphisme d'espaces vectoriels donc :

$$\dim(F) = \dim(\mathbb{R}^2) = 2$$

Montrons que les suite $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ appartiennent à F. Soit $n\in\mathbb{N}$. On a :

$$\cos\left((n+2)\frac{\pi}{3}\right) - \cos\left((n+1)\frac{\pi}{3}\right) + \cos\left(n\frac{\pi}{3}\right)$$

$$= \cos\left(n\frac{\pi}{3}\right)\cos\left(\frac{2\pi}{3}\right) - \sin\left(n\frac{\pi}{3}\right)\sin\left(\frac{2\pi}{3}\right) - \cos\left(n\frac{\pi}{3}\right)\cos\left(\frac{\pi}{3}\right) + \sin\left(n\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$$

$$+ \cos\left(n\frac{\pi}{3}\right)$$

$$= 0$$

car
$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2} = -\cos\left(\frac{2\pi}{3}\right)$$
 et $\sin\left(\frac{\pi}{3}\right) = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$. On a donc $(\alpha_n)_{n\in\mathbb{N}}\in F$ et, de la même manière, $(\beta_n)_{n\in\mathbb{N}}\in F$.

Justifions maintenant que la famille $((\alpha_n)_{n\in\mathbb{N}}, (\beta)_{n\in\mathbb{N}})$ est libre. Soit $(\lambda, \mu) \in \mathbb{R}^2$. On suppose que $\lambda(\alpha_n)_{n\in\mathbb{N}} + \mu(\beta_n)_{n\in\mathbb{N}} = 0_F$. Alors :

$$\forall n \in \mathbb{N}, \qquad \lambda \cos\left(\frac{n\pi}{3}\right) + \mu \sin\left(\frac{n\pi}{3}\right) = 0$$

Pour n = 0, on obtient $\lambda = 0$. Ensuite, pour n = 1, il reste $\mu \times \frac{\sqrt{3}}{2} = 0$ et donc $\mu = 0$. Donc la famille $((\alpha_n)_{n \in \mathbb{N}}, (\beta)_{n \in \mathbb{N}})$ est libre. Elle est constituée de deux vecteurs et l'espace vectoriel F est de dimension 2 donc :

la famille
$$((\alpha_n)_{n\in\mathbb{N}}, (\beta)_{n\in\mathbb{N}})$$
 est une base de F

COMMENTAIRE

Dans cet exercice, on a démontré le théorème relatif aux suites récurrentes linéaires d'ordre deux pour le cas particulier de la relation de récurrence :

$$\forall n \in \mathbb{N}, \qquad u_{n+2} - u_{n+1} + u_n = 0$$

Exercice 17 (C1-C2-C4-C7) $\ \ \,$ Notons $\ \, \mathcal D$ l'espace vectoriel des fonctions dérivables sur $\ \, \mathbb R$ à valeurs réelles. On considère le sous-ensemble de $\ \, \mathcal D$ suivant :

$$E = \left\{ x \longmapsto (ax + b) e^{-x} \,\middle|\, (a, b) \in \mathbb{R}^2 \right\}$$

On note d'iopérateur de dérivation des fonctions défini par d(f) = f' pour tout $f \in \mathcal{D}$.

1. Montrer que E est un espace vectoriel, en donner une base et la dimension. Tout d'abord, E est un sous-ensemble de \mathcal{D} car toute élément de \mathcal{D} est bien (par produit) une fonction dérivable sur \mathbb{R} . De plus,

$$E = \{x \longmapsto ax e^{-x} + b e^{-x} \mid (a, b) \in \mathbb{R}^2\} = \operatorname{Vect}(x \longmapsto x e^{-x}, x \longmapsto e^{-x})$$

donc E est un sous-espace vectoriel de \mathcal{D} .

Notons $\varphi: x \longmapsto x e^{-x}$ et $\psi: x \longmapsto e^{-x}$. Alors (φ, ψ) est une famille génératrice de E d'après l'égalité précédente. Étudions sa liberté. Soit $(\alpha, \beta) \in \mathbb{R}^2$. On suppose que $\alpha\varphi + \beta\psi = 0_{\mathcal{D}}$. Alors :

$$\forall x \in \mathbb{R}, \qquad \alpha x e^{-x} + \beta e^{-x} = 0$$

En remplaçant par exemple successivement x par 0 puis par 1, on trouve que $\beta=0$ puis que $\alpha=0$. La famille (φ,ψ) est donc libre. Finalement :

la famille (φ,ψ) est une base de E et $\dim(E)=2$

- 2. Montrer que d est un endomorphisme de E et déterminer sa matrice A dans la base obtenue à la question 1.
 - Soient $(f,g) \in \mathcal{D}$ et $\lambda \in \mathbb{R}$. On sait que la dérivée d'une combinaison linéaire et la combinaison linéaire des dérivée donc :

$$d(\lambda f + g) = (\lambda f + g)' = \lambda f' + g' = \lambda d(f) + d(g)$$

Ainsi, d est linéaire.

— Il reste à montrer que $d(E) \subset E$. Soit $f \in E$. Il existe alors $(a,b) \in \mathbb{R}^2$ tel que $f = a\varphi + b\psi$. Pour tout $x \in \mathbb{R}$, on a :

$$d(f)(x) = a\varphi'(x) + b\psi'(x) = a, e^{-x} - ax e^{-x} - b e^{-x} = -ax e^{-x} + (a - b) e^{-x}$$
$$= -a\varphi(x) + (a - b)\psi(x)$$

Autrement dit, $d(f) = -a\varphi + (a - b)\psi \in E$. Finalement :

d est un endomorphisme de E

De plus, $d(\varphi) = -\varphi + \psi$ et $d(\psi) = -\psi$ donc :

la matrice de φ exprimée dans la base (φ, ψ) de E est $A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$

3. Déterminer la dérivée de $x \mapsto (x+1) e^{-x}$ en utilisant la matrice A. Soit $f: x \mapsto (x+1) e^{-x}$. On a $f = \varphi + \psi$. On veut calculer d(f) en utilisant la matrice A. La matrice des coordonnées de f dans la base (φ, ψ) de E est $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et on a :

$$A\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}-1\\0\end{pmatrix}$$

Donc $d(f) = -\varphi + 0 \times \psi$, c'est-à-dire $f': x \longmapsto -x e^{-x}$.

4. Déterminer la fonction de E dont la dérivée est $x \longmapsto (2x+3) e^{-x}$ en utilisant la matrice A. Soit $G: x \longmapsto (2x+3) e^{-x}$. Les coordonnées de G dans la dans la base (φ, ψ) de E est

Soit $G: x \longmapsto (2x+3)e^{-x}$. Les coordonnées de G dans la dans la base ($\binom{2}{3}$). Soient $(a,b) \in \mathbb{R}^2$ et $g: x \longmapsto (ax+b)e^{-x} \in E$. Alors :

$$d(g) = G \iff A \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \iff \begin{cases} -a & = 2 \\ a - b & = 3 \end{cases}$$
$$\iff a = -2 \text{ et } b = 5$$

Donc:

la fonction
$$g: x \longmapsto (-2x+5) e^{-x}$$
 est telle que $d(g) = G$

5. Donner une méthode pour calculer la dérivée $n^{\rm e}$ de la fonction $f: x \longmapsto (x+1) {\rm e}^{-x}$ pour tout entier naturel n.

On montre par récurrence que pour tout $n \in \mathbb{N}$, on a $A^n = \begin{pmatrix} (-1)^n & 0 \\ n(-1)^n & (-1)^n \end{pmatrix}$.

• Initialisation : Pour n = 0, on a $A^0 = I_2$ et $\begin{pmatrix} (-1)^0 & 0 \\ 0 & (-1)^0 \end{pmatrix} = I_2$ donc la propriété est vraie au rang 0.

• Hérédité :

Soit $n \in \mathbb{N}$ tel que la propriété soit vraie au rang n. Montrons qu'elle est vraie au rang n+1.

$$\begin{split} A^{n+1} &= A^n \times A \\ &= \begin{pmatrix} (-1)^n & 0 \\ n(-1)^n & (-1)^n \end{pmatrix} \times \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} \text{ par hypothèse de récurrence} \\ &= \begin{pmatrix} (-1)^{n+1} & 0 \\ -n(-1)^n + (-1)^n & (-1)^{n+1} \end{pmatrix} \\ &= \begin{pmatrix} (-1)^{n+1} & 0 \\ (n+1)(-1)^{n+1} & (-1)^{n+1} \end{pmatrix} \end{split}$$

donc la propriété est vérifiée au rang n+1.

• Conclusion: Pour tout $n \in \mathbb{N}$, on a $A^n = \begin{pmatrix} (-1)^n & 0 \\ n(-1)^n & (-1)^n \end{pmatrix}$. Soient $(a,b) \in \mathbb{R}^2$, $f: x \longmapsto (ax+b) e^{-x} \in E$ et $n \in \mathbb{N}$. La matrice des coordonnées de f dans la base (φ,ψ) de E est $\begin{pmatrix} a \\ b \end{pmatrix}$ et celle de $d^n(f)$ est $A^n \begin{pmatrix} a \\ b \end{pmatrix}$. Or $d^n(f) = f^{(n)}$ correspond à la dérivée $n^{\text{ème}}$ de f. On a:

$$A^{n} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} (-1)^{n} & 0 \\ n(-1)^{n} & (-1)^{n} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} (-1)^{n} a \\ n(-1)^{n} a + (-1)^{n} b \end{pmatrix}$$

donc $f^{(n)} = (-1)^n a\varphi + (na + (-1)^n b)\psi$. Autrement dit :

$$f^{(n)}: x \longmapsto (-1)^n ax e^{-x} + (n(-1)^n a + (-1)^n b) e^{-x}$$

Exercice 18 (C2-C3-C6) On considère l'application :

$$\Phi: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R}^{n+1} \\ P & \longmapsto & \left(P(0), P(1), \dots, P(n)\right) \end{array} \right.$$

- 1. Montrer que $\Phi \in \mathcal{L}(\mathbb{R}_n[X], \mathbb{R}^{n+1})$.
 - Tout d'abord, l'application Φ est bien définie car :

$$\forall P \in \mathbb{R}_n[X], \qquad \Phi(P) = (P(0), \dots, P(n)) \in \mathbb{R}^{n+1}$$

— Montrons que Φ est linéaire. Soient $\lambda \in \mathbb{R}$ et $(P,Q) \in (\mathbb{R}_n[X])^2$. Montrons que $\Phi(\lambda P + Q) = \lambda \Phi(P) + \Phi(Q)$. On a :

$$\Phi(\lambda P + Q) = ((\lambda P + Q)(0), \dots, (\lambda P + Q)(n))$$

$$= (\lambda P(0) + Q(0), \dots, \lambda P(n) + Q(n))$$

$$= \lambda (P(0), \dots, P(n)) + (Q(0), \dots, Q(n))$$

$$= \lambda \Phi(P) + \Phi(Q)$$

Donc Φ est linéaire. Finalement, $\Phi \in \mathcal{L}(\mathbb{R}_n[X], \mathbb{R}^{n+1})$. 2. L'application Φ est-elle injective? surjective? bijective? Déterminons le noyau de Φ . Soit $P \in \mathbb{R}_n[X]$. Alors :

$$\begin{split} P \in \mathrm{Ker}(\Phi) \iff \Phi(P) &= 0_{\mathbb{R}_n[X]} \iff (P(0), \dots, P(n)) = (0, \dots, 0) \\ \iff \forall k \in \llbracket 0, n \rrbracket, \ P(k) = 0 \\ \iff 0, 1, \dots, n \text{ sont des racines de } P \\ \iff P &= 0_{\mathbb{R}_n[X]} \end{split}$$

car un polynôme de degré au plus n admet au plus n racines distinctes s'il n'est pas le polynôme nul. Ainsi, $\operatorname{Ker}(\Phi) = \{0_{\mathbb{R}_n[X]}\}$ et donc Φ est injective.

De plus, $\dim(\mathbb{R}_n[X]) = \dim(\mathbb{R}^{n+1}) = n+1$. Les espaces de départ et d'arrivée sont donc de même dimension *finie* (et Φ est injective) donc :

 Φ est bijective (et donc aussi en particulier surjective)

3. Déterminer les antécédents des vecteurs de la base canonique de \mathbb{R}^{n+1} par Φ . Notons (e_0, \ldots, e_n) la base canonique de \mathbb{R}^{n+1} . Soit $k \in [0, n]$. On note P_k l'antécédent de e_k par Φ dans $\mathbb{R}_n[X]$ (on sait que Φ est bijective). On a :

$$\Phi(P_k) = e_k \iff (P_k(0), \dots, P_k(n)) = e_k \iff \begin{cases} \forall \ell \in [0, n] \setminus \{k\}, \ P_k(\ell) = 0 \\ P_k(k) = 1 \end{cases}$$

Étant donné $\ell \in \llbracket 0, n \rrbracket \setminus \{k\}$, la condition $P_k(\ell) = 0$ signifie que ℓ est racine de P_k et donc que $X - \ell$ divise P_k . La première condition du système précédent signifie donc que P_k est divisible par $\prod_{\substack{\ell=0 \ \ell \neq k}}^n (X - \ell)$. Or P_k est de degré inférieur ou égal à n et le produit $\prod_{\substack{\ell=0 \ \ell \neq k}}^n (X - \ell)$ est de degré n donc cette même condition est équivalente à l'existence de $C \in \mathbb{R}$ tel que $P_k = C \prod_{\substack{\ell=0 \ \ell \neq k}}^n (X - \ell)$. Il ne reste plus qu'à traiter la deuxième condition du système précédent. On a :

$$P_k(k) = 1 \iff C \prod_{\substack{\ell=0\\\ell\neq k}}^n (k-\ell) = 1$$

$$\iff Ck(k-1) \times \dots \times 2 \times 1 \times (-1) \times \dots \times (-1)(n-k) = 1$$

$$\iff Ck! (-1)^{n-k} (n-k)! = 1$$

$$\iff C = \frac{(-1)^{n-k}}{k! (n-k)!}$$

Finalement:

pour tout
$$k \in [0, n]$$
, l'antécédent P_k de e_k par Φ dans $\mathbb{R}_n[X]$ est $P_k = \frac{(-1)^{n-k}}{k!(n-k)!} \prod_{\substack{\ell=0\\\ell\neq k}}^n (X-\ell)$