Fiche de révision 8 Calcul matriciel

Compétences et notions à maîtriser

- > C1 : Effectuer un produit matriciel
- ▷ C2 : Étudier l'inversibilité d'une matrice (en résolvant un système linéaire ou en utilisant une équation vérifiée par la matrice)
- ▷ C3 : Calculer des puissances de matrices (en utilisant la formule du binôme de Newton ou un raisonnement par récurrence)

2 Rappels de cours

2.1Calcul matriciel

Soit $A \in \mathcal{M}_{n,p}$. On définit la matrice transposée de A par ${}^tA = C \in \mathcal{M}_{p,n}$ avec :

$$\forall i \in [|1, p|], \ \forall j \in [|1, n|], \ c_{i,j} = a_{j,i}$$

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, le rang de la matrice A est le rang de la famille constituée par ses vecteurs colonnes. On le note rg(A).

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est **inversible** si et seulement si il existe une matrice B telle que AB = BA = I_n . Alors on note $B = A^{-1}$.

Proposition 2.1.1 Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si $\operatorname{rg}(A) = n$.

Proposition 2.1.2 Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$.

- La matrice A est inversible si et seulement si ad bc ≠ 0.
 Si A est inversible, alors son inverse est A⁻¹ = 1/ad bc (d b)/(-c a).

Proposition 2.1.3 On veut résoudre un système linéaire du type AX = Y, où A et Y sont connus. On applique au système l'algorithme du pivot de Gauss.

Étape 1	Déterminer la première colonne qui contient un élément non nul
Étape 2	Quitte à permuter deux lignes, s'assurer que le premier élément de cette
	colonne est non nul, notons le a. C'est le pivot.
Étape 3	Diviser la ligne par a
Étape 4	Ajouter des multiples adéquats de cette ligne aux lignes en-dessous pour
	faire apparaître des 0 sous le pivot
Étape 5	On recommence avec les lignes restantes
Dernière étape	En travaillant de droite à gauche, pour chaque colonne qui contient un pivot,
	on ajoute des multiples adéquats de la ligne du pivot au lignes au-dessus
	pour faire apparaître des 0 au-dessus du pivot

Théorème 2.1.4 (Formule du binôme de Newton)

Si A et B sont deux matrices carrées qui commutent, on a la formule :

$$(\mathbf{A} + \mathbf{B})^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

3 Exercices

Exercice 1 (C2) \Box Les matrices A, B et C suivantes sont-elles inversibles? Si oui, déterminer l'expression de la matrice inverse.

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix} \qquad \text{et} \qquad C = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 1 & -1 \\ 2 & 0 & 5 \end{pmatrix}$$

Exercice 2 (C2) Soient $m \in \mathbb{R}$ et $A_m = \begin{pmatrix} m & 1 \\ 2 & m+1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Pour quelle(s) valeur(s) de m la matrice A_m est-elle inversible? Dans ce(s) cas, déterminer l'expression de la matrice inverse.

Exercice 3 $\ \, \ \, \ \,$ On considère la matrice $A=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ de $\mathcal{M}_3(\mathbb{R})$.

- 1. Montrer que la matrice A est inversible et déterminer son inverse.
- 2. Calculer A^2 . En déduire, pour tout entier naturel n, la matrice A^n .

Exercice 4 (C1-C3) 🗇 On considère la matrice :

$$A = \begin{pmatrix} 4 & 2 & -4 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

- 1. Exprimer A^2 comme combinaison linéaire de A et I_3 .
- 2. En déduire que A est inversible et exprimer A^{-1} en fonction de A et I_3 .
- 3. (a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, il existe $(a_n, b_n) \in \mathbb{R}^2$ tel que $A^n = a_n A + b_n I_3$.
 - (b) Déterminer l'expression de a_n et b_n en fonction de n pour tout $n \in \mathbb{N}$ puis celle de A^n .

- 1. Montrer que M est nilpotente, c'est-à-dire qu'il existe $k \in \mathbb{N}$ tel que $\forall n \geq k, \ M^n = 0$.
- 2. Pour tout $n \in \mathbb{N}$, calculer A^n .
- 3. Déterminer A^{-1} .

Exercice 6 (C3) Soit $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Pour tout entier naturel n, calculer A^n en utilisant la formule du binôme de Newton.

2

- 1. Montrer que pour tout $n \in \mathbb{N}$, $A^n = a_n I + b_n J$.
- 2. Déterminer A^n pour tout $n \in \mathbb{N}$.

- 1. Calculer A^2 et vérifier que $A^2 3A + 2I = 0_{\mathcal{M}_3(\mathbb{R})}$.
- 2. En déduire que A est inversible et calculer A^{-1} .
- 3. On pose pour tout $n \in \mathbb{N}$, $B_n = A^n + A 2I_3$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $A^{n+2} 2A^{n+1} = A^{n+1} 2A^n$.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $A^{n+2} = 2A^{n+1} + A 2I_3$.
 - (c) Montrer que pour tout $n \in \mathbb{N}$, $B_{n+2} = 2B_{n+1}$.
 - (d) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 9 (C1-C3) \Box On considère la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $A^n = \begin{pmatrix} 1 & a_n & b_n \\ 0 & 1 & a_n \\ 0 & 0 & 1 \end{pmatrix}$.
- 2. Donner une relation de récurrence sur a_n et b_n . En déduire l'expression de A^n pour tout $n \in \mathbb{N}$.

Exercice 10 (C2) On dit qu'une matrice M est nilpotente si il existe $k \in \mathbb{N}$ tel que $M^k = 0$. Montrer que la matrice $I_n - M$ est inversible et que;

$$(I_n - M)^{-1} = I_n + M + \dots + M^{k-1}$$

 $\mbox{Application: Calculer l'inverse de } A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$