Devoir maison 3

Ce DM est à faire en deux étapes :

- 1. comme un DS de 2h, seul, d'une seule traite et sans document
- 2. avec un stylo d'une autre couleur, corriger et compléter le travail comme pour un DM, en ayant accès au cours, au TD, en posant des questions par mail, etc

Exercice 1.

On dispose d'une pièce de monnaie amenant pile avec la probabilité $\frac{2}{3}$ et face avec la probabilité $\frac{1}{3}$.

Partie I - Étude d'une première variable aléatoire

On effectue une succession de lancers avec cette pièce et on définit la variable aléatoire X prenant la valeur du nombre de face avant l'obtention du deuxième pile. Par exemple, l'enchaînement FFPFFFP... est tel que X=5.

- 1. (a) Décrire les événements (X = 0), (X = 1) et (X = 2) puis calculer leurs probabilités.
 - (b) Montrer que:

$$\forall n \in \mathbb{N}, \qquad P(X=n) = (n+1)\frac{4}{3^{n+2}}$$

(c) Déterminer, si elle existe, l'espérance de X.

Partie II - Étude d'une expérience en deux étapes

On effectue une succession de lancers avec la pièce précédente jusqu'à l'obtention du deuxième pile. Puis, en fonction du nombre n de face obtenus, on place n+1 boules dans une urne, les boules étant numérotées de 0 à n et indiscernables au toucher. Enfin, on pioche une boule de cette urne.

On note toujours X la variable aléatoire prenant la valeur du nombre de face obtenus, et U la variable aléatoire prenant la valeur du numéro de la boule choisie. On pose V = X - U.

- 2. (a) Déterminer l'ensemble des valeurs prises par la variable aléatoire U.
 - (b) Déterminer, pour tout $(n,k) \in \mathbb{N}^2$, la probabilité conditionnelle

$$P(U = k \mid X = n).$$

(c) En déduire que :

$$\forall k \in \mathbb{N}, \qquad P(U=k) = \sum_{n=k}^{+\infty} \frac{1}{n+1} P(X=n) \qquad \text{puis} \qquad P(U=k) = \frac{2}{3^{k+1}}$$

- (d) Montrer que U admet une espérance et une variance et les calculer.
- 3. (a) Déterminer l'ensemble des valeurs prises par la variable aléatoire V.
 - (b) Déterminer, pour tout $(n,k) \in \mathbb{N}^2$, la probabilité conditionnelle

$$P(V = k \mid X = n).$$

- (c) En déduire la loi de V.
- 4. Montrer que les variables aléatoires U et V sont indépendantes, c'est-à-dire que :

$$\forall (k,\ell) \in U(\Omega) \times V(\Omega), \qquad P((U=k) \cap (V=\ell)) = P(U=k) P(V=\ell)$$

Partie III - Étude d'un jeu

Dans cette partie, p désigne un nombre réel de l'intervalle]0,1[.

Deux individus A et B s'affrontent dans un jeu de pile ou face dont les règles sont les suivantes :

- le joueur A dispose de la pièce amenant pile avec la probabilité $\frac{2}{3}$ et lance cette pièce jusqu'à l'obtention du deuxième pile; on note X la variable aléatoire prenant la valeur du nombre de face alors obtenus;
- le joueur B dispose d'une autre pièce amenant pile avec la probabilité p et lance cette pièce jusqu'à l'obtention d'un pile; on note Y la variable aléatoire prenant la valeur du nombre de face alors obtenus;
- les lancers de pièces des joueurs A et B sont indépendants;
- le joueur A gagne si son nombre de face obtenus est inférieur ou égal à celui de B; sinon c'est le joueur B qui gagne.

On dit que le jeu est équilibré lorsque les joueurs A et B ont la même probabilité de gagner.

- 5. Étude de la variable aléatoire Y
 - (a) Déterminer la loi de Y. On s'aidera des évènements B_k : « Le lancer k effectué par le joueur B amène pile» définis pour tout $k \in \mathbb{N}^*$.
 - (b) Montrer que:

$$\forall n \in \mathbb{N}, \qquad P(Y \geqslant n) = (1-p)^n$$

6. En utilisant le système quasi-complet d'événements associé à la variable aléatoire X, montrer que :

$$P(X \leqslant Y) = \sum_{n=0}^{+\infty} P(X = n) P(Y \geqslant n)$$

7. Déduire des résultats précédents l'égalité :

$$P(X \leqslant Y) = \frac{4}{(2+p)^2}$$

8. Déterminer la valeur de p pour que le jeu soit équilibré.

Exercice 2.

On s'intéresse à la résolution du système d'équations différentielles

$$\begin{cases} \frac{dm}{dt} = a - cm \\ \frac{dp}{dt} = bm - dp \end{cases} \tag{1}$$

où $(a,b,c,d) \in (\mathbb{R}_+^*)^4$ tel que $c \neq d$ et $(m,p) \in \mathcal{C}^1(\mathbb{R}_+,\mathbb{R})$. On pose $m_0 = m(0)$ et $p_0 = p(0)$.

Partie I - On considère dans cette partie que

$$b = 1, \quad c = 1, \quad d = 2$$

et on cherche à trouver les solutions du système différentiel (1) qui est devenu

$$\begin{cases} \frac{dm}{dt} = a - m \\ \frac{dp}{dt} = m - 2p \end{cases} \tag{2}$$

1. Montrer que (m, p) une solution de (2) si et seulement si (m, -m + p) est une solution du système différentiel

$$\begin{cases}
\frac{dz_1}{dt} = -z_1 + a \\
\frac{dz_2}{dt} = -2z_2 - a.
\end{cases}$$
(3)

- 2. Résoudre chacune des équations du système différentiel (3).
- 3. En déduire les solutions de (2).

Partie II - On revient à l'étude générale du système différentiel (1).

4. Résoudre le problème de Cauchy

$$\begin{cases} \frac{dm}{dt} = a - cm\\ m(0) = m_0 \end{cases} \tag{4}$$

- 5. Calculer la limite m_{∞} de m(t) quand t tend vers l'infini.
- 6. Calculer l'équation de la tangente à la courbe représentative de m en zéro.
- 7. Tracer l'allure de la fonction m sur $[0, +\infty[$ dans le cas où $m_0 > \frac{a}{c}$ et dans le cas où $m_0 < \frac{a}{c}$.
- 8. (a) Déterminer l'ensemble des solutions de l'équation homogène $\frac{dp}{dt} + dp = 0$.
 - (b) Déterminer une solution particulière de l'équation différentielle $\frac{dp}{dt} = bm dp$ sous la forme $y_p : t \mapsto Ae^{-ct} + B$, avec $(A, B) \in \mathbb{R}^2$.
 - (c) En déduire l'unique solution du problème de Cauchy

$$\begin{cases} \frac{dp}{dt} = bm - dp \\ p(0) = p_0 \end{cases}$$
 (5)

9. Calculer la limite p_{∞} de p(t) quand t tend vers l'infini.