#### Correction du devoir maison 3

Ce DM est à faire en deux étapes :

- 1. comme un DS de 2h, seul, d'une seule traite et sans document
- 2. avec un stylo d'une autre couleur, corriger et compléter le travail comme pour un DM, en ayant accès au cours, au TD, en posant des questions par mail, etc

#### Exercice 1.

On dispose d'une pièce de monnaie amenant pile avec la probabilité  $\frac{2}{3}$  et face avec la probabilité  $\frac{1}{3}$ .

## Partie I - Étude d'une première variable aléatoire

On effectue une succession de lancers avec cette pièce et on définit la variable aléatoire X prenant la valeur du nombre de face avant l'obtention du deuxième pile. Par exemple, l'enchaînement FFPFFFP... est tel que X=5.

1. (a) Décrire les événements (X = 0), (X = 1) et (X = 2) puis calculer leurs probabilités.

Pour tout entier naturel k non nul, on considère l'événement  $F_k$  (respectivement  $P_k$ ): « le  $k^e$  lancer a amené face (respectivement pile) ».

- ★ L'événement (X = 0) est réalisé si et seulement si les deux premiers lancers ont amené *pile*. Ainsi  $(X = 0) = P_1 \cap P_2$  et, par indépendance des lancers,  $P(X = 0) = P(P_1) P(P_2) = \frac{4}{9}$ .
- ★ L'événement (X = 1) est réalisé si et seulement si le deuxième pile est obtenu au troisième lancer. On a l'égalité  $(X = 1) = (F_1 \cap P_2 \cap P_3) \cup (P_1 \cap F_2 \cap P_3)$ . Les deux événements qui interviennent dans la réunion sont incompatibles (puisqu'on ne peut pas obtenir *pile* et *face* en même temps au premier lancer) donc :

$$P(X = 1) = P(F_1 \cap P_2 \cap P_3) + P(P_1 \cap F_2 \cap P_3)$$
  
= P(F\_1) P(P\_2) P(P\_3) + P(P\_1) P(F\_2) P(P\_3)

par indépendance mutuelle des lancers. D'où

$$P(X = 1) = 2\left(\frac{2}{3}\right)^{2} \frac{1}{3}$$
$$= \frac{8}{27}$$

★ L'événement (X = 2) est réalisé si et seulement si exactement quatre lancers de pièces ont été nécessaires pour obtenir les deux pile (en particulier, le quatrième lancer a donc amené un pile). On a donc l'égalité :

$$(X = 2) = (F_1 \cap F_2 \cap P_3 \cap P_4) \cup (F_1 \cap P_2 \cap F_3 \cap P_4)$$
  
 $\cup (P_1 \cap F_2 \cap F_3 \cap P_4)$ 

Les trois événements qui interviennent dans cette réunion sont deux à deux

incompatibles et les lancers sont mutuellement indépendants donc :

$$\begin{split} P(X=2) &= P(F_1) \, P(F_2) \, P(P_3) \, P(P_4) + P(F_1) \, P(P_2) \, P(F_3) \, P(P_4) \\ &\quad + P(P_1) \, P(F_2) \, P(F_3) \, P(P_4) \\ &= 3 \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^2 \\ &= \frac{12}{81} \end{split}$$

Finalement:

$$P(X = 0) = \frac{4}{9}$$
,  $P(X = 1) = \frac{8}{27}$  et  $P(X = 2) = \frac{12}{81}$ 

(b) Montrer que:

$$\forall n \in \mathbb{N}, \qquad P(X=n) = (n+1)\frac{4}{3^{n+2}}$$

Soit  $n \in \mathbb{N}$ . L'événement (X = n) est réalisé si et seulement si exactement n+2 lancers de pièces ont été nécessaires pour obtenir deux pile (le deuxième pile ayant donc été obtenu au  $(n+2)^{\rm e}$  lancer). Le premier pile a pu être obtenu au premier lancer ou au second, ..., ou au  $(n+1)^{\rm e}$  lancer. On a donc l'égalité :

$$(X=n) = \bigcup_{k=1}^{n+1} (\mathbf{F}_1 \cap \dots \cap \mathbf{F}_{k-1} \cap \mathbf{P}_k \cap \mathbf{F}_{k+1} \cap \dots \cap \mathbf{F}_{n+1} \cap \mathbf{P}_{n+2})$$

Les n+1 événements intervenant dans cette réunion sont deux à deux incompatibles et les lancers de pièce sont mutuellement indépendants donc on a successivement les égalités :

$$P(X = n) = \sum_{k=1}^{n+1} P(F_1 \cap \dots \cap F_{k-1} \cap P_k \cap F_{k+1} \cap \dots \cap F_{n+1} \cap P_{n+2})$$

$$= \sum_{k=1}^{n+1} P(F_1) \dots P(F_{k-1}) P(P_k) P(F_{k+1}) \dots P(F_{n+1}) P(P_{n+2})$$

$$= \sum_{k=1}^{n+1} \left(\frac{1}{3}\right)^n \left(\frac{2}{3}\right)^2$$

$$= \frac{4}{3^{n+2}} \sum_{k=1}^{n+1} 1$$

par linéarité de la somme. Ainsi :

$$\forall n \in \mathbb{N}, \qquad P(X=n) = (n+1)\frac{4}{3^{n+2}}$$

(c) Déterminer, si elle existe, l'espérance de X.

X admet un espérance si et seulement si la série de terme général nP(X=n) est absolument convergente, si et seulement si la série de terme général  $n(n+1)\frac{4}{3^{n+2}}$  est convergente par positivité des termes.

On pose pour tout  $n \in \mathbb{N}$ , la somme partielle  $S_n = \sum_{k=0}^n k(k+1) \frac{4}{3^{k+2}}$ . On a :

$$S_n = \sum_{k=0}^n k(k+1) \frac{4}{3^{k+2}}$$

$$= 4 \sum_{k=1}^n k(k+1) \frac{1}{3^{k+2}} \text{ car nulle en } k = 0$$

$$= 4 \sum_{\ell=2}^{n+1} (\ell-1) \ell \frac{1}{3^{\ell+1}} \text{ en posant } \ell = k+1$$

$$= \frac{4}{3^3} \sum_{\ell=2}^{n+1} \ell(\ell-1) \left(\frac{1}{3}\right)^{\ell-2}$$

On reconnaît une somme partielle de série géométrique dérivée seconde de raison  $q = \frac{1}{3}$ . Comme -1 < q < 1, la suite  $(S_n)$  converge, donc X admet une espérance. On a de plus :

$$E(X) = \lim_{n \to +\infty} S_n$$

$$= \frac{4}{3^3} \times \frac{2}{\left(1 - \frac{1}{3}\right)^3}$$

$$= \frac{4}{3^3} \times \frac{2 \times 3^3}{2^3}$$

$$= 1$$

Ainsi E(X) = 1

# Partie II - Étude d'une expérience en deux étapes

On effectue une succession de lancers avec la pièce précédente jusqu'à l'obtention du deuxième pile. Puis, en fonction du nombre n de face obtenus, on place n+1 boules dans une urne, les boules étant numérotées de 0 à n et indiscernables au toucher. Enfin, on pioche une boule de cette urne.

On note toujours X la variable aléatoire prenant la valeur du nombre de face obtenus, et U la variable aléatoire prenant la valeur du numéro de la boule choisie. On pose V = X - U.

2. (a) Déterminer l'ensemble des valeurs prises par la variable aléatoire U.

Si  $n \in \mathbb{N}$  face ont été obtenus avant l'obtention du deuxième pile (c'est-à-dire si X=n), alors on pioche une boule dans une urne qui en contient n+1 numérotées de 0 à n. Donc U peut déjà prendre toutes les valeurs comprises entre 0 et n. Or la valeur prise par X peut être arbitrairement grande (on a  $X(\Omega) = \mathbb{N}$ ) donc le numéro de la boule tirée au cours de l'expérience peut être arbitrairement grand. Ainsi :

l'ensemble des valeurs prises par U est  $U(\Omega) = \mathbb{N}$ 

(b) Déterminer, pour tout  $(n,k) \in \mathbb{N}^2$ , la probabilité conditionnelle

$$P(U = k \mid X = n).$$

Soit  $(n,k) \in \mathbb{N}^2$ . Si X = n, alors on pioche une boule dans une urne qui en contient n numérotées de 0 à n. Par équiprobabilité, on a donc

$$P(U = k | X = n) = \frac{1}{n+1}$$
 si  $0 \le k \le n$ .

Si k>n, alors  $\mathrm{P}(U=k\,|\,X=n)=0$  car il n'y a pas de boule numéroté k dans l'urne. Finalement :

$$\forall (n,k) \in \mathbb{N}^2, \qquad P(U=k \mid X=n) = \begin{cases} \frac{1}{n+1} & \text{si } 0 \leqslant k \leqslant n \\ 0 & \text{sinon} \end{cases}$$

Soit  $n \in \mathbb{N}$ . On dit que la loi conditionnelle de U sachant l'événement (X = n) est la loi uniforme sur l'intervalle [0, n].

#### (c) En déduire que :

$$\forall k \in \mathbb{N}, \qquad P(U=k) = \sum_{n=k}^{+\infty} \frac{1}{n+1} P(X=n) \qquad \text{puis} \qquad P(U=k) = \frac{2}{3^{k+1}}$$

Soit  $k \in \mathbb{N}$ . Comme  $\{(X = n) \mid n \in \mathbb{N}\}$  est un système quasi-complet d'événements de probabilités non nulles, on sait d'après la formule des probabilités totales que la série  $\sum_{n \geqslant 0} \mathrm{P}(U = k \mid X = n) \, \mathrm{P}(X = n)$  est convergente de somme égale à  $\mathrm{P}(U = k)$ .

Ainsi:

$$P(U = k) = \sum_{n=0}^{+\infty} P(U = k \mid X = n) P(X = n)$$

$$= \sum_{n=0}^{k-1} \underbrace{P(U = k \mid X = n)}_{=0 \text{ (question 2b)}} P(X = n)$$

$$+ \sum_{n=k}^{+\infty} \underbrace{P(U = k \mid X = n)}_{=n+1 \text{ (question 2b)}} P(X = n) \quad \text{(relation de Chasles)}$$

Ainsi:

$$P(U = k) = \sum_{n=k}^{+\infty} \frac{1}{n+1} P(X = n)$$

On utilise maintenant la question 1b:

$$P(U = k) = \sum_{n=k}^{+\infty} \frac{4}{3^{n+2}} = \frac{4}{3^{k+2}} \sum_{n=k}^{+\infty} \left(\frac{1}{3}\right)^{n-k}$$

$$= \frac{4}{3^{k+2}} \sum_{\ell=0}^{+\infty} \left(\frac{1}{3}\right)^{\ell} \qquad \text{(chgt d'indice } \ell = n - k)$$

$$= \frac{4}{3^{k+2}} \times \frac{1}{1 - \frac{1}{3}}$$

en utilisant la formule donnant la somme d'une série géométrique (convergente).

Finalement, on a bien:

$$\forall k \in \mathbb{N}, \qquad P(U=k) = \frac{2}{3^{k+1}}$$

(d) Montrer que U admet une espérance et une variance et les calculer.

### \* Étude de l'espérance

La variable aléatoire U admet une espérance si et seulement si la série  $\sum_{k\geqslant 0} k\, \mathrm{P}(U=k)$  converge absolument, c'est-à-dire converge car cette série

est à termes positifs. Pour tout entier naturel k, on a :

$$k P(U = k) = \frac{2k}{3^{k+1}} = \frac{2}{9} \times k \left(\frac{1}{3}\right)^{k-1}$$

La série géométrique dérivée première de raison  $\frac{1}{3}$  est convergente car  $\frac{1}{3} \in ]-1,1[$ . Or l'ensemble des séries convergentes est un espace vectoriel donc la série  $\sum_{k\geqslant 0}\,k\,\mathrm{P}(U=k)$  est convergente. Finalement, U admet une espérance

$$E(U) = \sum_{k=0}^{+\infty} k P(U = k) = \frac{2}{9} \sum_{k=1}^{+\infty} k \left(\frac{1}{3}\right)^{k-1}$$
 (linéarité de la somme)
$$= \frac{2}{9} \times \frac{1}{\left(1 - \frac{1}{3}\right)^2}$$
$$= \frac{1}{2}$$

#### \* Étude de la variance

D'après le théorème de Kœnig-Huygens, la variable aléatoire U admet une variance si et seulement si elle admet une espérance et un moment d'ordre 2. D'après le théorème de transfert,  $U^2$  admet une espérance si et seulement si la série  $\sum_{k>0} k^2 P(U=k)$  est absolument convergente, c'est-à-dire converge

car cette série est à termes positifs. Pour tout entier naturel k, on a :

$$k^{2} P(U = k) = \frac{2k^{2}}{3^{k+1}} = \frac{2k(k-1)}{3^{k+1}} + \frac{2k}{3^{k+1}}$$
$$= \frac{2}{27} \times k(k-1) \left(\frac{1}{3}\right)^{k-2} + \frac{2}{9} \times k \left(\frac{1}{3}\right)^{k-1}$$

Comme  $\frac{1}{3} \in ]-1,1[$ , les séries géométriques dérivées première et seconde de raison  $\frac{1}{3}$  sont convergente. L'ensemble des séries convergentes étant un espace vectoriel, la série  $\sum_{k \geq 0} \, k^2 \, \mathrm{P}(U=k)$  est convergente. Ainsi,  $U^2$  admet une espérance qui vaut :

$$\begin{split} \mathbf{E}(U^2) &= \sum_{k=0}^{+\infty} \, k^2 \, \mathbf{P}(U=k) \\ &= \frac{2}{27} \, \sum_{k=2}^{+\infty} \, k(k-1) \left(\frac{1}{3}\right)^{k-2} + \frac{2}{9} \, \sum_{k=1}^{+\infty} \, k \left(\frac{1}{3}\right)^{k-1} \quad \text{(par linéarité)} \\ &= \frac{2}{27} \times \frac{2}{\left(1 - \frac{1}{3}\right)^3} + \frac{2}{9} \times \frac{1}{\left(1 - \frac{1}{3}\right)^2} \\ &= 1 \end{split}$$

La variable aléatoire U admet donc une variance qui vaut

$$V(U) = E(U^2) - E(U)^2 = \frac{3}{4}$$

Finalement : la variable aléatoire  $\boxed{U}$  admet une espérance et une variance  $\boxed{\text{qui}}$  valent

$$\boxed{\mathrm{E}(U) = \frac{1}{2}}, \quad \boxed{\mathrm{V}(U) = \frac{3}{4}}.$$

3. (a) Déterminer l'ensemble des valeurs prises par la variable aléatoire V.

Par définition de U, on sait que  $U\leqslant X$  donc  $V\geqslant 0$ . Pour tout entier naturel n, la variable aléatoire V peut prendre la valeur n (il suffit que X prenne la valeur n et que l'on pioche la boule numérotée 0, c'est-à-dire que U=0). Ainsi :

l'ensemble des valeurs prises par V est  $V(\Omega) = \mathbb{N}$ 

(b) Déterminer, pour tout  $(n,k) \in \mathbb{N}^2$ , la probabilité conditionnelle

$$P(V = k \mid X = n).$$

Soit  $(n,k) \in \mathbb{N}^2$ . On a :

$$P(V = k | X = n) = P(X - U = k | X = n) = P(U = n - k | X = n)$$

La variable aléatoire U étant à valeurs positives, on a  $\mathrm{P}(U=n-k\,|\,X=n)=0$  si k>n. Si  $k\in [\![0,n]\!]$ , alors  $n-k\in [\![0,n]\!]$  et alors  $\mathrm{P}(U=n-k\,|\,X=n)=\frac{1}{n+1}$  d'après la question 2b. Ainsi :

$$\forall (n,k) \in \mathbb{N}^2, \qquad P(V=k \mid X=n) = \left\{ \begin{array}{ll} \frac{1}{n+1} & \text{si } 0 \leqslant k \leqslant n \\ 0 & \text{sinon} \end{array} \right.$$

Pour tout entier naturel n, la loi conditionnelle de V sachant (X = n) est donc la loi uniforme sur l'intervalle [0, n].

(c) En déduire la loi de V.

On sait que  $V(\Omega) = U(\Omega) = \mathbb{N}$ . On observe que les lois conditionnelles de U et V sachant (X = n) sont identiques. Les mêmes calculs que ceux menés à la question 2c fournissent donc également :

$$\forall k \in \mathbb{N}, \qquad P(V = k) = \frac{2}{3^{k+1}}$$

4. Montrer que les variables aléatoires U et V sont indépendantes, c'est-à-dire que :

$$\forall (k,\ell) \in U(\Omega) \times V(\Omega), \qquad P((U=k) \cap (V=\ell)) = P(U=k) P(V=\ell)$$

Soit  $(k, \ell) \in \mathbb{N}^2$ . On a :

$$P((U = k) \cap (V = \ell)) = P((U = k) \cap (X - U = \ell))$$
  
=  $P((U = k) \cap (X = k + \ell))$   
=  $P(U = k \mid X = k + \ell) P(X = k + \ell)$ 

car  $P(X = k + \ell) \neq 0$ . Ainsi

$$P((U=k)\cap (V=\ell)) = \frac{1}{k+\ell+1} \times (k+\ell+1) \frac{4}{3^{k+\ell+2}}$$

d'après la question 2b car  $k \leq k + \ell$ . Ainsi :

$$P((U=k) \cap (V=\ell)) = \frac{4}{3^{k+\ell+2}} = \frac{2}{3^{k+1}} \times \frac{2}{3^{\ell+1}} = P(U=k) P(V=\ell)$$

Finalement:

les variables aléatoires U et V sont indépendantes

## Partie III - Étude d'un jeu

Dans cette partie, p désigne un nombre réel de l'intervalle [0,1[.

Deux individus A et B s'affrontent dans un jeu de pile ou face dont les règles sont les suivantes :

- le joueur A dispose de la pièce amenant pile avec la probabilité  $\frac{2}{3}$  et lance cette pièce jusqu'à l'obtention du deuxième pile; on note X la variable aléatoire prenant la valeur du nombre de face alors obtenus;
- le joueur B dispose d'une autre pièce amenant pile avec la probabilité p et lance cette pièce jusqu'à l'obtention d'un pile; on note Y la variable aléatoire prenant la valeur du nombre de face alors obtenus;
- les lancers de pièces des joueurs A et B sont indépendants;
- le joueur A gagne si son nombre de face obtenus est inférieur ou égal à celui de B; sinon c'est le joueur B qui gagne.

On dit que le jeu est équilibré lorsque les joueurs A et B ont la même probabilité de gagner.

#### 5. Étude de la variable aléatoire Y

(a) Déterminer la loi de Y. On s'aidera des évènements  $B_k$ : « Le lancer k effectué par le joueur B amène pile» définis pour tout  $k \in \mathbb{N}^*$ .

Y représente le nombre de face obtenus avant le premier pile donc  $Y(\Omega) = \mathbb{N}$ : on peut obtenir directement un pile ou l'attendre pendant un très grand nombre de lancers.

Soit  $n \in \mathbb{N}$ , l'évènements Y = n signifie qu'on a obtenu n fois face avant le premier pile, donc le premier pile a été obtenu au lancer n+1. On a alors :

$$P(Y = n) = P(\bar{B}_1 \cap ... \cap \bar{B}_n \cap B_{n+1})$$

$$= \left(\prod_{k=1}^n P(\bar{B}_k)\right) \times P(B_{n+1}) \text{ par indépendance des lancers}$$

$$= (1 - p)^n p$$

$$\operatorname{donc} \left[ P(Y=n) = (1-p)^n p \right]$$

(b) Montrer que:

$$\forall n \in \mathbb{N}, \qquad P(Y \geqslant n) = (1-p)^n$$

Soit  $n \in \mathbb{N}$ . On a :

$$P(Y \ge n) = P\left(\bigcup_{k=n}^{+\infty} (Y = k)\right)$$

car Y prend des valeurs entières. Les événements (Y=k) (où  $k\geqslant n$ ) sont deux à deux incompatibles et P est une probabilité donc la série  $\sum_{k\geqslant n} \mathrm{P}(Y=k)$  est

convergente de somme  $P(Y \ge n)$ . On a donc :

$$P(Y \ge n) = \sum_{k=n}^{+\infty} P(Y = k)$$

$$= \sum_{k=n}^{+\infty} p(1-p)^k$$

$$= p \sum_{\ell=0}^{+\infty} (1-p)^{\ell+n} \qquad (\ell = k-n)$$

$$= p(1-p)^n \sum_{\ell=0}^{+\infty} (1-p)^{\ell} \qquad \text{(par linéarité de la somme)}$$

$$= p(1-p)^n \times \frac{1}{1-(1-p)}$$

Finalement:

$$\forall n \in \mathbb{N}, \qquad P(Y \geqslant n) = (1-p)^n$$

6. En utilisant le système quasi-complet d'événements associé à la variable aléatoire X, montrer que :

$$P(X \leqslant Y) = \sum_{n=0}^{+\infty} P(X = n) P(Y \geqslant n)$$

Comme  $\{(X = n) \mid n \in \mathbb{N}\}$  est un système quasi-complet d'événements de probabilités non nulles, on sait d'après la formule des probabilités totales que la série  $\sum_{n \geqslant 0} P((X = n)) = (X \in Y)$  est approprié de server ( $X \in Y$ ). On a

 $n)\cap (X\leqslant Y))$  est convergente de somme égale à  $\mathbf{P}(X\leqslant Y).$  Or :

$$\forall n \in \mathbb{N}, \qquad P((X = n) \cap (X \leqslant Y)) = P((X = n) \cap (Y \geqslant n))$$
  
=  $P(X = n) P(Y \geqslant n)$ 

par indépendance des lancers de pièces des joueurs A et B. Ainsi :

$$P(X \leqslant Y) = \sum_{n=0}^{+\infty} P(X = n) P(Y \geqslant n)$$

7. Déduire des résultats précédents l'égalité :

$$P(X \leqslant Y) = \frac{4}{(2+p)^2}$$

La loi de la variable aléatoire X a été obtenue à la question 1b. En utilisant également

la question 5b, on a alors:

$$P(X \le Y) = \sum_{n=0}^{+\infty} (n+1) \frac{4}{3^{n+2}} (1-p)^n$$

$$= \frac{4}{9} \sum_{n=0}^{+\infty} (n+1) \left(\frac{1-p}{3}\right)^n \qquad \text{(par linéarité de la somme)}$$

$$= \frac{4}{9} \sum_{k=1}^{+\infty} k \left(\frac{1-p}{3}\right)^{k-1} \qquad \text{(changement d'indice } k = n+1)$$

$$= \frac{4}{9} \times \frac{1}{(1-\frac{1-p}{3})^2}$$

$$= \frac{4}{9} \times \frac{9}{(2+p)^2}$$

Finalement, on a bien:

$$P(X \leqslant Y) = \frac{4}{(2+p)^2}$$

8. Déterminer la valeur de p pour que le jeu soit équilibré.

L'événement  $(X\leqslant Y)$  est : « le joueur A gagne le jeu ». Le jeu est équitable si et seulement la probabilité que A gagne est égale à  $\frac{1}{2}$ . On résout donc :

$$P(X \leqslant Y) = \frac{1}{2} \iff \frac{4}{(2+p)^2} = \frac{1}{2}$$

$$\iff (2+p)^2 = 8$$

$$\iff 2+p = 2\sqrt{2} \qquad (\operatorname{car} 2+p \geqslant 0)$$

Ainsi:

le jeu est équitable si et seulement si  $p = 2\sqrt{2} - 2$ 

### Exercice 2.

On s'intéresse à la résolution du système d'équations différentielles

$$\begin{cases} \frac{dm}{dt} = a - cm \\ \frac{dp}{dt} = bm - dp \end{cases} \tag{1}$$

où  $(a,b,c,d) \in (\mathbb{R}_+^*)^4$  tel que  $c \neq d$  et  $(m,p) \in \mathcal{C}^1(\mathbb{R}_+,\mathbb{R})$ . On pose  $m_0 = m(0)$  et  $p_0 = p(0)$ .

#### Partie I - On considère dans cette partie que

$$b = 1, \quad c = 1, \quad d = 2$$

et on cherche à trouver les solutions du système différentiel (1) qui est devenu

$$\begin{cases} \frac{dm}{dt} = a - m \\ \frac{dp}{dt} = m - 2p \end{cases}$$
 (2)

1. Montrer que (m, p) une solution de (2) si et seulement si (m, -m + p) est une solution du système différentiel

$$\begin{cases}
\frac{dz_1}{dt} = -z_1 + a \\
\frac{dz_2}{dt} = -2z_2 - a.
\end{cases}$$
(3)

On a: 
$$(m,p) \text{ solution de } (2) \iff \begin{cases} \frac{dm}{dt} = a - m \\ \frac{dp}{dt} = m - 2p \end{cases}$$
 
$$\iff \begin{cases} \frac{dm}{dt} = a - m \\ -\frac{dm}{dt} + \frac{dp}{dt} = -a + m + m - 2p \text{ par } L_2 \leftarrow L_2 - L_1 \end{cases}$$
 
$$\iff \begin{cases} \frac{dm}{dt} = a - cm \\ \frac{d(-m+p)}{dt} = -a + 2m - 2p \end{cases}$$
 
$$\iff \begin{cases} \frac{dm}{dt} = a - cm \\ \frac{d(-m+p)}{dt} = -2(-m+p) - a \end{cases}$$
 
$$\iff (m, -m+p) \text{ solution de } (3)$$

2. Résoudre chacune des équations du système différentiel (3).

Chacune des équations est une équation différentielle d'ordre 1 à coefficients constants et à second membre constant. On en déduit que les ensembles de solutions sont

$$\left\{ t \mapsto C_1 e^{-t} + a : C_1 \in \mathbb{R} \right\} \qquad \left\{ t \mapsto C_2 e^{-2t} - \frac{a}{2} : C_2 \in \mathbb{R} \right\}$$

3. En déduire les solutions de (2).

On a

$$\begin{cases} z_1 = m \\ z_2 = -m + p \end{cases} \iff \begin{cases} m = z_1 \\ p = z_1 + z_2 \end{cases}$$

D'après la question 1,  $(z_1, z_2)$  est solution de (3) si et seulement si  $(z_1, z_1 + z_2)$  est solution de (2). Donc d'après la question précédente on en déduit que l'ensemble des solutions de (2) est l'ensemble

$$to \left\{ t \mapsto \left( C_1 e^{-t} + a, C_1 e^{-t} + C_2 e^{-2t} + \frac{a}{2} \right) : (C_1, C_2) \in \mathbb{R}^2 \right\}.$$

#### Partie II - On revient à l'étude générale du système différentiel (1).

4. Résoudre le problème de Cauchy

$$\begin{cases} \frac{dm}{dt} = a - cm\\ m(0) = m_0 \end{cases} \tag{4}$$

On reconnaît une équation différentielle d'ordre 1 à coefficients constants. L'équation homogène associée est :

$$m' + cm = 0.$$

L'ensemble des solutions de l'équation homogène est :

$$\left\{t \mapsto C_1 e^{-ct}, \ C_1 \in \mathbb{R}\right\}.$$

Une solution particulière constante est solution de :

$$0 = a - cm \iff m = \frac{a}{c}.$$

Ainsi, l'ensemble des solution de l'équation différentielle est :

$$\left\{ t \mapsto C_1 e^{-ct} + \frac{a}{c}, \ C_1 \in \mathbb{R} \right\}.$$

On cherche maintenant la solution du problème de Cauchy. On détermine  $C_1$  pour avoir  $m(0)=m_0$  :

$$m(0) = m_0 \iff C_1 e^{-c \times 0} + \frac{a}{c} = m_0$$
  
$$\iff C_1 = m_0 - \frac{a}{c}$$

Ainsi, l'unique solution du problème de Cauchy est :

$$m(t) = \left(m_0 - \frac{a}{c}\right)e^{-ct} + \frac{a}{c}.$$

5. Calculer la limite  $m_{\infty}$  de m(t) quand t tend vers l'infini.

Comme 
$$c > 0$$
,  $\lim_{t \to +\infty} e^{-ct} = 0$ . Donc

$$m_{\infty} = \frac{a}{c}$$

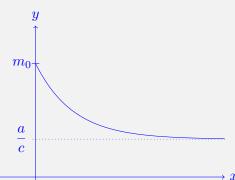
6. Calculer l'équation de la tangente à la courbe représentative de m en zéro.

Comme m est solution du système différentiel,  $\frac{dm}{dt}(0)=a-cm_0$ . Donc l'équation de la tangente est

$$y = (a - cm_0)x + m_0$$

7. Tracer l'allure de la fonction m sur  $[0,+\infty[$  dans le cas où  $m_0>\frac{a}{c}$  et dans le cas où  $m_0<\frac{a}{c}$ .

Dans le cas où  $m_0 > \frac{a}{c}$  on a



Dans le cas où  $m_0 < \frac{a}{c}$  on a



8. (a) Déterminer l'ensemble des solutions de l'équation homogène  $\frac{dp}{dt} + dp = 0$ .

L'ensemble des solutions de l'équation homogène est :

$$\boxed{\left\{t\mapsto C_2e^{-dt},\ C_2\in\mathbb{R}\right\}}.$$

(b) Déterminer une solution particulière de l'équation différentielle  $\frac{dp}{dt} = bm - dp$  sous la forme  $y_p : t \mapsto Ae^{-ct} + B$ , avec  $(A, B) \in \mathbb{R}^2$ .

Soit  $(A, B) \in \mathbb{R}^2$ , on pose  $y_p : t \mapsto Ae^{-ct} + B$ . La fonction  $y_p$  est  $\mathcal{C}^1(\mathbb{R})$  comme somme et composée de fonctions usuelles qui le sont.

Pour  $t \in \mathbb{R}$ , on a  $y'_p(t) = -Ace^{-ct}$ . On obtient :

$$y_p \text{ solution de } y' + dy = bm \iff -Ace^{-ct} + d(Ae^{-ct} + B) = bm$$

$$\iff A(-c + d)e^{-ct} + Bd = b\left(m_0 - \frac{a}{c}\right)e^{-ct} + \frac{ab}{c}$$

$$\iff \begin{cases} A(-c + d) = b\left(m_0 - \frac{a}{c}\right) \\ Bd = \frac{ab}{c} \end{cases}$$

$$\iff \begin{cases} A = \frac{b}{d-c}\left(m_0 - \frac{a}{c}\right) & \text{car } c \neq d \\ B = \frac{ab}{cd} & \text{car } d \neq 0 \end{cases}$$

donc une solution particulière est :

$$y_p: t \mapsto \frac{b}{d-c} \left( m_0 - \frac{a}{c} \right) e^{-ct} + \frac{ab}{cd}$$

(c) En déduire l'unique solution du problème de Cauchy

$$\begin{cases} \frac{dp}{dt} = bm - dp\\ p(0) = p_0 \end{cases} \tag{5}$$

L'ensemble des solutions de l'équation différentielle est donc :

$$\left\{t \mapsto C_2 e^{-dt} + \frac{b}{d-c} \left(m_0 - \frac{a}{c}\right) e^{-ct} + \frac{ab}{cd}, \ C_2 \in \mathbb{R}\right\}.$$

On cherche l'unique solution du problème de Cauchy, donc on détermine  $C_2$  pour avoir  $p(0) = p_0$ :

$$p(0) = p_0 \iff C_2 + \frac{b}{d-c} \left( m_0 - \frac{a}{c} \right) + \frac{ab}{cd} = p_0$$
$$\iff C_2 = p_0 - \frac{b}{d-c} \left( m_0 - \frac{a}{c} \right) - \frac{ab}{cd}$$

donc on obtient:

$$p(t) = \left(p_0 - \frac{b\left(m_0 - \frac{a}{c}\right)}{d - c} - \frac{ab}{cd}\right)e^{-dt} + \frac{b\left(m_0 - \frac{a}{c}\right)}{d - c}e^{-ct} + \frac{ab}{cd}$$

9. Calculer la limite  $p_{\infty}$  de p(t) quand t tend vers l'infini.

Comme d > 0, et c > 0, on en déduit que

$$\lim_{t \to \infty} e^{-dt} = 0 = \lim_{t \to \infty} e^{-ct}.$$

Donc

$$p_{\infty} = \frac{ab}{cd}$$