Programme de colle S8

1 Remarques au colleurs

- Vous pouvez demander en question de cours ou dans un exercice de prouver la formule de l'espérance ou de la variance d'une va de loi usuelle (finie ou infinie).
- Vous pouvez demander en question de cours ou dans un exercice de prouver la propriété sur la somme de deux va de loi de Poisson indépendantes.
- Seule la notion de sous-espace vectoriel a été vue cette semaine dans le chapitre 5, donc pas de famille de vecteurs pour l'instant.

2 Chapitre 3 : Variables aléatoires réelles discrètes

- notations relatives à une variable aléatoire : (X = a), $(a < X \le b)$, $(X \ge a)$,...
- univers image $X(\Omega)$, loi d'une variable aléatoire discrète
- l'ensemble $\{(X=x) \mid x \in X(\Omega)\}$ est un système quasi-complet d'événements
- fonction de répartition d'une variable aléatoire réelle discrète et propriétés : croissance, limites en $\pm \infty$, fonction en escalier, lien avec la loi de probabilité de X
- définition : une variable aléatoire admet une espérance si la série $\sum_{k \in X(\Omega)} k P(X=k)$ est absolument

convergente, notion de variable aléatoire centrée

- propriétés de l'espérance :
 - 1. une combinaison linéaire de variables aléatoires admettant une espérance admet une espérance et formule $E(\lambda X + \mu Y) = \dots$ (linéarité de l'espérance)
 - 2. positivité et croissance de l'espérance
 - 3. théorème de transfert : étant donnée une fonction $f: X(\Omega) \longrightarrow \mathbb{R}$, la variable aléatoire f(X) admet une espérance si et seulement si la série $\sum_{x \in X(\Omega)} f(x) P(X=x)$ est absolument convergente et, dans

ce cas, on a
$$\mathrm{E}(f(X)) = \sum_{x \in X(\Omega)} f(x) \, \mathrm{P}(X = x)$$

- définition : une variable aléatoire X admet une variance si X E(X) admet un moment d'ordre 2
- théorème de Kœnig-Huygens : X admet une variance si et seulement si X admet une espérance et un moment d'ordre 2 et, dans ce cas, $V(X) = E(X^2) E(X)^2$
- propriétés : positivité de la variance, variance de aX + b si X admet une variance, la variance est nulle si et seulement si X est constante
- écart-type, variable aléatoire centrée réduite
- inégalité de Markov
- indépendance de deux variables aléatoires
- indépendance deux à deux de n variables aléatoires discrètes, indépendance mutuelle de n variables aléatoires discrètes
- loi certaine (variable aléatoire constante), loi de Bernoulli, loi binomiale, loi uniforme
- loi géométrique sur \mathbb{N}^* (elle correspond au rang d'apparition du premier succès lors de la répétition infinie d'épreuves de Bernoulli mutuellement indépendantes et identiques) : $X \hookrightarrow \mathcal{G}(p)$ si $X(\Omega) = \mathbb{N}^*$ et si pour tout $k \in \mathbb{N}^*$, $P(X = k) = (1 p)^{k-1}p$
 - espérance et variance
 - propriété d'invariance temporelle de la loi géométrique :

$$\forall (m, n) \in \mathbb{N}^2$$
, $P(X > m + n \mid X > n) = P(X > m)$

- loi de Poisson : $X \hookrightarrow \mathcal{P}(\lambda)$ si $X(\Omega) = \mathbb{N}$ et si pour tout $k \in \mathbb{N}$, $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$
 - espérance et variance

- possibilité d'approximer la loi binomiale $\mathcal{B}(n,p)$ par la loi de Poisson $\mathcal{P}(np)$ dans de bonnes conditions notamment lorsque $n \geq 30$, $p \leq 0, 1$ et $np(1-p) \leq 10$
- loi d'une somme de variables aléatoires discrètes indépendante : exemple d'une somme de deux va suivant une loi de Poisson, puis de n va
- loi d'une variable aléatoire discrète définie conditionnellement à une autre : exemple d'une va Y de loi binomiale (n, p) sachant que X = n où X suit une loi de Poisson
- loi du min ou du max de va discrètes indépendantes

3 Chapitre 5 : Espaces vectoriels

- opérations dans un espace vectoriel E, règles de calculs (associativité, distributivités, vecteur nul 0_E , etc), exemples fondamentaux : \mathbb{K}^n , $C^0(\mathbb{R})$, $C^n(\mathbb{R})$ ($n \in \mathbb{N} \cup \{\infty\}$), $\mathcal{M}_{n,p}(\mathbb{K})$, $\mathbb{K}[X]$, $\mathbb{K}_n[X]$, $\mathbb{R}^\mathbb{N}$, $\mathcal{M}_{n,p}(\mathbb{K})$
- notion de combinaison linéaire
- sous-espace vectoriel d'un espace vectoriel (contient 0_E et est stable par combinaisons linéaires), intersection finie de sous-espaces vectoriels d'un espace vectoriel

4 Fiche de révision 7 : Fonctions de deux variables

- domaine de définition d'une fonction de deux variables (domaine à savoir représenter dans le plan)
- notion intuitive de fonction de classe C^1 sur un sous-ensemble de \mathbb{R}^2 , calcul pratique des dérivées partielles d'une fonction de deux variables (et par extension, de plusieurs variables)
- gradient d'une fonction de deux variables, lien avec la recherche d'extrema : si f est de classe \mathcal{C}^1 sur $\mathcal{D} \subset \mathbb{R}^2$ et si f admet un extremum en un point $(x,y) \in \mathcal{D}$, alors $\overrightarrow{\operatorname{grad}} f(x,y) = (0,0)$ (la réciproque est fausse)
- théorème de dérivabilité et dérivée d'une fonction de la forme $t \mapsto f(x(t), y(t))$ où f est une fonction de deux variables (de classe \mathcal{C}^1)
- fonction de classe \mathcal{C}^2 , théorème de symétrie de Schwartz
- ligne (ou courbe) de niveau k d'une fonction de deux variables
- plan tangent à une surface en un point (x_0, y_0) où la fonction est de classe \mathcal{C}^1

5 Fiche de révision 8 : Calcul matriciel

- opérations sur les matrices
- algorithme du pivot de Gauss pour résoudre un système linéaire
- inversion d'une matrice :
 - le cas général en résolvant un système par pivot de Gauss
 - le cas général à partir d'une équation vérifiée par la matrice
- calcul d'une puissance $n^{\text{ième}}$ de matrice :
 - trouver la formule grâce aux premiers termes puis la prouver par récurrence
 - formule du binôme de Newton

6 Python

- Travail sur les listes et les tableaux (TP1)
- Simulation d'une expérience aléatoire grâce aux fonctions random et randint
- Travail sur les chaînes de caractères et les dictionnaires (TP4)

7 La question de cours

Voici quelques exemples (liste non exhaustive):

- 1. Énoncer la formule des probabilités totales
- 2. Définir le système complet d'évènements associé à une variable aléatoire discrète
- 3. Définir l'espérance d'une variable aléatoire discrète d'univers image N
- 4. Définir la variance d'une variable aléatoire discrète d'univers image $\mathbb N$
- 5. Énoncer le théorème de Kœnig-Huygens

- 6. Énoncer l'inégalité de Markov
- 7. Énoncer l'inégalité de Bienaymé-Tchebychev
- 8. Énoncer le théorème de transfert dans le cadre d'une variable aléatoire réelle discrète d'univers image égal à $\mathbb N$
- 9. Quand dit-on qu'une variable aléatoire X suit une loi binomiale? Quelles sont alors les espérance et variance associées?
- 10. Quand dit-on qu'une variable aléatoire X suit une loi de Poisson? Quelles sont alors les espérance et variance associées?
- 11. Quand dit-on qu'une variable aléatoire X suit une loi géométrique? Quelles sont alors les espérance et variance associées?
- 12. Énoncer la propriété d'invariance temporelle de la loi géométrique.
- 13. Soit $n \in \mathbb{N}^*$ et X_1, \ldots, X_n des variables aléatoires discrètes. Définir l'indépendance deux à deux et l'indépendance mutuelle de cette famille de variables aléatoires.
- 14. Donner la définition de la fonction de répartition d'une variable aléatoire réelle discrète. Dresser son tableau de variation.
- 15. Donner la définition de sous-espace vectoriel.
- 16. Énoncer la formule du binôme de Newton pour les matrices.
- 17. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,m}(\mathbb{K})$. On note $C = A \times B$. Quelle est la taille de C? Donner l'expression de ses coefficients.
- 18. Déterminer la ligne de niveau truc de $f:(x,y) \longmapsto$ machin et en proposer une représentation.
- 19. Donner l'équation du plan tangent à une surface d'équation z = f(x, y) au point de coordonnées (x_0, y_0) .
- $20.\ \dots$