TD 8 - Réduction d'un endomorphisme

Compétences à acquérir :

- ▷ C1 : Déterminer les valeurs propres, les sous-espaces propres d'une matrice, d'un endomorphisme
- ▷ C2 : Étudier la diagonalisabilité d'une matrice, d'un endomorphisme
- ▷ C3 : Déterminer les puissances d'une matrice à partir de sa diagonalisation

Exercice 1 (C1-C2) \Box 1. Étudier la diagonalisabilité dans \mathbb{R} de chacune des matrices suivantes. Lorsque c'est possible, diagonaliser la matrice.

a)
$$A = \begin{pmatrix} -5 & -4 \\ 6 & 5 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 4 & -1 \\ 9 & -2 \end{pmatrix}$ c) $C = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ d) $D = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

- 2. Étudier la diagonalisabilité dans \mathbb{C} de la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ et si c'est possible, diagonaliser la matrice.
- 3. La fonction numpy.linalg.eig permet de calculer les valeurs propres et les vecteurs propres d'une matrice, comme le montre l'exemple suivant :

Après cette suite d'instructions, la variable vap contient la liste des valeurs propres de la matrice $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et la variable vep est une matrice dont les colonnes sont des vecteurs propres de cette matrice.

Utiliser l'outil informatique pour déterminer les éléments propres de la matrice $E = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}$. On vérifiera mathématiquement les résultats obtenus. Cette matrice est-elle diagonalisable? Si oui, diagonaliser cette matrice.

4. Étudier la diagonalisabilité des applications linéaires suivantes et diagonaliser l'application le cas échéant.

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (y+z,x+z,x+y) \end{array} \right.$$

(b) $g: \left\{ \begin{array}{ccc} \mathcal{M}_2(\mathbb{C}) & \longrightarrow & \mathcal{M}_2(\mathbb{C}) \\ \mathcal{M} & \longmapsto & {}^t\mathcal{M} \end{array} \right.$
(c) $h: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}_2[X] \\ P & \longmapsto & XP'-P'' \end{array} \right.$

Exercice 2 (C2) $\ \ \$ On considère la matrice $A = \begin{pmatrix} 4 & 3 & -3 \\ -3 & -2 & 3 \\ 3 & 3 & -2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- 1. Vérifier que $A^2 + A 2I_3 = 0_{\mathcal{M}_3(\mathbb{R})}$.
- 2. Montrer que A est inversible et exprimer A^{-1} en fonction de A et I_3 .
- 3.(a) Factoriser le polynôme $P(X) = X^2 + X 2$.
 - (b) Montrer que les valeurs propres λ de A vérifient l'équation $\lambda^2 + \lambda 2 = 0$.
 - (c) En déduire le spectre de A.
- 4. La matrice A est-elle diagonalisable?

Exercice 3 (C2-C3) $\ \ \ \ \ \$ On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par ses trois premiers termes u_0, u_1 et u_2 et par la relation de récurrence suivante :

$$\forall n \in \mathbb{N}, \qquad u_{n+3} = 2u_{n+2} + u_{n+1} - 2u_n$$

On pose
$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}) \text{ et } X_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) \text{ pour tout entier naturel } n.$$

- 1. Écrire une fonction informatique qui prend en argument u_0 , u_1 et u_2 et qui renvoie la liste des 100 premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$.
- 2.(a) Montrer que $Sp(A) = \{-1, 1, 2\}.$
 - (b) La matrice A est-elle diagonalisable? Préciser le cas échéant des matrices P inversible et D diagonale d'ordre 3 telles que $A = PDP^{-1}$.
- 3. Pour tout entier naturel n, exprimer X_n en fonction de A, n et X_0 .
- 4. Montrer qu'il existe $(a, b, c) \in \mathbb{R}^3$ tels que :

$$\forall n \in \mathbb{N}, \qquad u_n = a + b(-1)^n + c2^n$$

On ne cherchera pas à expliciter les nombres a, b et c.

Exercice 4 (C1-C2) Soit $\mathcal{B} = (e_1, e_2, e_3)$ une base de \mathbb{R}^3 . On considère l'application de \mathbb{R}^3 définie de la manière suivante. Si $u = xe_1 + ye_2 + ze_3 \in \mathbb{R}^3$ (où x, y et z sont trois nombres réels), alors :

$$f(u) = (x + 2y - z)e_1 + (-2x - 3y + 3z)e_2 + (x + y - 2z)e_3$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^3 .
- 2. Donner la matrice M de f exprimée dans la base \mathcal{B} de \mathbb{R}^3 .
- 3. Donner les éléments propres de f et montrer que f est diagonalisable.
- 4. Déterminer une base C de \mathbb{R}^3 dans laquelle la matrice (notée D) de f est diagonale et préciser le lien entre les matrices D et M.

Exercice 5 (C1-C2) \square Soit n un entier naturel supérieur ou égal à 3. On note (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n . On considère l'endomorphisme u de \mathbb{R}^n défini par :

$$u(e_1) = u(e_n) = \sum_{k=1}^{n} e_k$$
 et $\forall k \in [2, n-1], \ u(e_k) = e_n$

- 1.(a) Déterminer une base de Im(u). L'application u est-elle bijective?
 - (b) Donner une base du sous-espace propre de u associé à la valeur propre 0.
- 2. Montrer que tout vecteur propre de u associé à une valeur propre non nulle appartient à l'image de u.
- 3. En déduire les sous-espaces propres de u. L'endomorphisme u de \mathbb{R}^n est-il diagonalisable?

Exercice 6 (C1-C2-C3) On considère les matrices :

$$A = \begin{pmatrix} -2 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix} \qquad \text{et} \qquad B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

de $\mathcal{M}_3(\mathbb{R})$.

- 1. Montrer que $Sp(A) = \{-1\}$ et déterminer le sous-espace propre associé.
- 2. Justifier que les matrices A et B sont semblables.
- 3. En déduire l'expression de la matrice A^n en fonction de n pour tout $n \in \mathbb{N}$.

Exercice 7 (C1-C2-C3) \square Soit $m \in \mathbb{R}$. On considère la matrice :

$$A = \begin{pmatrix} 1 & m & m \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

Déterminer une condition nécessaire et suffisante sur m pour que A soit diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

Exercice 8 (C1-C2) \square Pour tout nombre réel x, on pose :

$$f_1(x) = e^{3x}$$
, $f_2(x) = e^{-x}$, $f_3(x) = \sin(x)$ et $f_4(x) = \cos(x)$

On pose $E = Vect(f_1, f_2, f_3, f_4)$.

- 1. Montrer que la famille $\mathcal{B} = (f_1, f_2, f_3, f_4)$ est une base de E.
- 2. Soit $h \in \mathbb{R} \setminus \pi\mathbb{Z}$. On définit l'application T_h qui à $f \in E$ associe l'application g définie par :

$$\forall x \in \mathbb{R}, \qquad g(x) = f(x+h)$$

Montrer que T_h est un endomorphisme de E et donner sa matrice M dans la base \mathcal{B} .

3. Donner les valeurs propres de T_h et étudier sa diagonalisabilité dans \mathbb{R} .

Exercice 9 (C1-C2) $\ \ \,$ 1. On considère la matrice $A = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Montrer

qu'il existe des matrices P et D de $\mathcal{M}_2(\mathbb{R})$ (à expliciter) telles que $A = PDP^{-1}$.

On suppose qu'il existe deux fonctions f et g de classe \mathcal{C}^1 sur \mathbb{R} (que l'on cherche à déterminer) telles que :

$$\forall t \in \mathbb{R}, \qquad \begin{cases} f'(t) &= f(t) - 2g(t) \\ g'(t) &= f(t) + 4g(t) \end{cases} \tag{S}$$

et pour tout nombre réel t, on pose $X(t) = \begin{pmatrix} f(t) \\ g(t) \end{pmatrix}$ et $X'(t) = \begin{pmatrix} f'(t) \\ g'(t) \end{pmatrix}$.

- 2. Traduire matriciellement le système (S).
- 3. Soit $t \in \mathbb{R}$. On pose $Y(t) = P^{-1}X(t)$. Que vaut Y'(t)?
- 4. Donner un système différentiel vérifié par la fonction Y. En déduire les fonctions f et g.

Exercice 10 (C1-C2) \square On considère les fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} suivantes :

$$f: t \longmapsto e^t, \qquad g: t \longmapsto e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}}{2}t\right) \qquad \text{et} \qquad h: t \longmapsto e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right)$$

On note F le sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ engendré par la famille $\mathcal{B}=(f,g,h)$.

- 1. Montrer que la dimension de F est égale à 3.
- 2. On considère l'opérateur D de dérivation sur F défini par D(u) = u' pour tout $u \in F$. Justifier que D est un endomorphisme de F et déterminer la matrice A de D dans la base \mathcal{B} . L'application D est-elle diagonalisable dans \mathbb{R} ? dans \mathbb{C} ?
- 3. Déterminer une base de $Ker(D^2 + D + Id_F)$. En déduire que $D^2 + D$ est diagonalisable.

Exercice 11 (C1-C2) 🗐 On considère la matrice :

$$J = \begin{pmatrix} 0 & 2 & 1 \\ 0 & -1 & 2 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

et on note f l'endomorphisme de \mathbb{R}^3 dont la matrice est J dans la base canonique de \mathbb{R}^3 .

- 1. Déterminer les valeurs propres de f et les sous-espaces propres correspondants. Montrer que f est diagonalisable. On déterminera une base de vecteurs propres de f dans laquelle la matrice de f est diagonale.
 - On considère dans la suite une base $C = (c_1, c_2, c_3)$ formée de vecteurs propres de f.
- 2. On suppose qu'il existe un endomorphisme g de \mathbb{R}^3 tel que $g^2 = f$ (on dit que g est une racine carrée de f).
 - (a) Montrer que $g \circ f = f \circ g$.
 - (b) Soit $i \in \{1, 2, 3\}$. Montrer que si $c_i \in E_{\lambda_i}(f)$ alors $g(c_i) \in E_{\lambda_i}(f)$. En déduire que $g(c_i)$ et c_i sont colinéaires.
 - (c) En déduire que g est diagonalisable dans la base C.
 - (d) Existe-t-il une matrice M de $\mathcal{M}_3(\mathbb{R})$ vérifiant $M^2 = J$? Expliquer comment trouver une matrice M de $\mathcal{M}_3(\mathbb{C})$ vérifiant $M^2 = J$.

Exercice 12 (C1-C2) $\ \ \, \mathbb{S}$ Soit $A = \begin{pmatrix} 12 & 10 \\ -15 & -13 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- 1. Montrer que A est diagonalisable et diagonaliser A. On notera dans la suite $A = PDP^{-1}$ la diagonalisation obtenue.
- 2. On cherche maintenant le *commutant* de A (noté C(A)), c'est-à-dire l'ensemble des matrices de $\mathcal{M}_2(\mathbb{R})$ qui commutent avec A:

$$C(A) = \{ B \in \mathcal{M}_2(\mathbb{R}) \mid AB = BA \}$$

- (a) Soit $M \in \mathcal{M}_2(\mathbb{R})$. Montrer que M appartient à $\mathcal{C}(A)$ si et seulement si les matrices $N = P^{-1}MP$ et D commutent.
- (b) Montrer qu'une matrice de $\mathcal{M}_2(\mathbb{R})$ commute avec D si et seulement si elle est diagonale.
- (c) En déduire $\mathcal{C}(A)$.

Exercice 13 (C1-C2) \square Soit $n \in \mathbb{N}^*$. On considère l'application Φ définie par :

$$\forall P \in \mathbb{R}_n[X], \qquad \Phi(P) = (X - X^2)P'' + (1 - 2X)P'$$

- 1. Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$. Déterminer sa matrice M exprimée dans la base canonique de $\mathbb{R}_n[X]$.
- 2. Déterminer les valeurs propres de Φ .
- 3. L'application Φ est-elle diagonalisable? bijective? Justifier.

Exercice 14 (C1-C2) Soit n un entier naturel supérieur ou égal à 3. On note E l'espace vectoriel $\mathbb{R}_n[X]$. Pour tout $P \in E$, on pose :

$$f(P) = (X^2 + 1)P'' - 2XP'$$

- 1. Montrer que f est un endomorphisme de E et déterminer sa matrice dans la base canonique de E.
- 2. Déterminer l'ensemble des valeurs propres de f.
- 3. Résoudre l'équation différentielle $(x^2 + 1)y' 2xy = 0$ dans \mathbb{R} et en déduire une base de $\operatorname{Ker}(f)$.
- 4. Montrer que $\operatorname{Ker}(f+2\operatorname{Id}_E)\subset\mathbb{R}_2[X]$ et en déduire $\operatorname{Ker}(f+2\operatorname{Id}_E)$.
- 5. Conclure quant à la diagonalisabilité de f.

Exercice 15 (C2) Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soit f un endomorphisme de E tel que :

$$f^2 + f - 2\operatorname{Id}_E = 0_{\mathcal{L}(E)}, \qquad f \neq -2\operatorname{Id}_E, \qquad f \neq \operatorname{Id}_E$$

- 1. Déterminer les valeurs propres possibles de f.
- 2.(a) Montrer que $\operatorname{Im}(f + 2\operatorname{Id}_E) \subset \operatorname{Ker}(f \operatorname{Id}_E)$.
 - (b) Montrer que $\operatorname{Im}(f + 2\operatorname{Id}_E) \neq \{0_E\}.$
 - (c) En déduire que 1 est valeur propre de f.
- 3. Montrer de même que -2 est bien valeur propre de f.
- 4. Montrer que f est diagonalisable.

Exercice 16 (C2) \square Soient E un \mathbb{R} -espace vectoriel, $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{R}$.

- 1. Montrer que si λ^2 est valeur propre de f^2 , alors λ ou $-\lambda$ est valeur propre de f.
- 2. Si f est bijectif et si λ et valeur propre de f, montrer que $\lambda \neq 0$ et que $\frac{1}{\lambda}$ est valeur propre de f^{-1} .

Exercice 17 (C1-C2, oral Agro-Véto 2017) Pour les programmes python, on pourra utiliser la fonction linalg.matrix_rank() du module numpy, qui permet de déterminer le rang d'une famille de vecteurs.

Exemple d'utilisation de cette fonction :

```
import numpy as np
V = np.array([[1,2,1] , [2,3,2]])
print(np.linalg.matrix_rank(V))
```

La valeur renvoyée par python est alors : 2.

On considère la matrice $A = \begin{pmatrix} -4 & -3 & -3 \\ 0 & 2 & 0 \\ 6 & 3 & 5 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ et f l'endomorphisme de \mathbb{R}^3 représenté dans la base canonique par la matrice A.

- 1.(a) Écrire une fonction python prenant en arguments deux vecteurs de taille 3 et renvoyant un booléen (True ou False) indiquant s'ils sont colinéaires.
 - On pourra représenter les vecteurs par des listes.
 - (b) Écrire une fonction python prenant en argument un vecteur de taille 3 et renvoyant un booléen indiquant s'il est vecteur propre de A ou non.
- 2.(a) Vérifier que les vecteurs (1, -2, 0), (0, 1, -1) et (1, 0, -1) sont des vecteurs propres de f et préciser pour chacun la valeur propre associée.
 - (b) L'endomorphisme f est-il diagonalisable?
- 3.(a) Écrire un programme python permettant de déterminer le nombre de vecteurs propres de A dont les coefficients sont des entiers compris entre -10 et 10 (bornes incluses).
 - (b) Pour un entier naturel N non nul, calculer le nombre de vecteurs propres de A dont les coefficients sont des entiers compris entre -N et N (bornes incluses).
- 4. Soit N un entier naturel non nul. Une expérience consiste à choisir au hasard de manière indépendante N vecteurs à coefficients entiers dans $[-N, N]^3$.
 - (a) Quelle est la probabilité p_N d'obtenir au moins un vecteur propre parmi ces N vecteurs?
 - (b) Quelle est la limite de $N \ln \left(1 \frac{2N(N+2)}{(2N+1)^3}\right)$ quand N tend vers $+\infty$? En déduire la limite de p_N quand N tend vers $+\infty$.