Programme de colle S9

1 Chapitre 5 : Espaces vectoriels

- opérations dans un espace vectoriel E, règles de calculs (associativité, distributivités, vecteur nul 0_E , etc), exemples fondamentaux : \mathbb{K}^n , $\mathcal{C}^0(\mathbb{R})$, $\mathcal{C}^n(\mathbb{R})$ ($n \in \mathbb{N} \cup \{\infty\}$), $\mathcal{M}_{n,p}(\mathbb{K})$, $\mathbb{K}[X]$, $\mathbb{K}_n[X]$, $\mathbb{R}^\mathbb{N}$, $\mathcal{M}_{n,p}(\mathbb{K})$
- notion de combinaison linéaire
- sous-espace vectoriel d'un espace vectoriel (contient 0_E et est stable par combinaisons linéaires), intersection finie de sous-espaces vectoriels d'un espace vectoriel
- sous-espace vectoriel engendré par une famille finie de vecteurs
- différentes écritures d'un espace vectoriel (cartésienne, paramétrée et vectorielle), passage d'une écriture à une autre
- famille génératrice finie, famille finie libre ou liée, propriétés sur ces familles
- base finie d'un espace vectoriel, unicité des coordonnées d'un vecteur dans une base choisie, matrice des coordonnées d'un vecteur exprimées dans un base
- dimension d'un espace vectoriel admettant une famille génératrice finie, propriété sur la dimension : si F est un sous-espace vectoriel de E, avec E de dimension finie, alors F est de dimension finie et $\dim(F) \leq \dim(E)$
- propriétés sur les familles libres et génératrices par rapport à la dimension de l'espace vectoriel
- rang d'une famille de vecteurs, calcul pratique du rang et lien avec la liberté, les familles génératrices et les bases
- propriétés classiques des espaces \mathbb{K}^n , $\mathbb{K}_n[X]$ et $\mathcal{M}_{n,p}(\mathbb{K})$ à connaître (dimension, base canonique, et propriété sur les familles de polynômes de degrés 2 à 2 distincts)

2 Fiche de révision 7 : Fonctions de deux variables

- domaine de définition d'une fonction de deux variables (domaine à savoir représenter dans le plan)
- notion intuitive de fonction de classe C^1 sur un sous-ensemble de \mathbb{R}^2 , calcul pratique des dérivées partielles d'une fonction de deux variables (et par extension, de plusieurs variables)
- gradient d'une fonction de deux variables, lien avec la recherche d'extrema : si f est de classe \mathcal{C}^1 sur $\mathcal{D} \subset \mathbb{R}^2$ et si f admet un extremum en un point $(x,y) \in \mathcal{D}$, alors $\overrightarrow{\text{grad}} f(x,y) = (0,0)$ (la réciproque est fausse)
- théorème de dérivabilité et dérivée d'une fonction de la forme $t \mapsto f(x(t), y(t))$ où f est une fonction de deux variables (de classe \mathcal{C}^1)
- fonction de classe C^2 , théorème de symétrie de Schwartz
- ligne (ou courbe) de niveau k d'une fonction de deux variables
- plan tangent à une surface en un point (x_0, y_0) où la fonction est de classe \mathcal{C}^1

3 Fiche de révision 8 : Calcul matriciel

- opérations sur les matrices
- algorithme du pivot de Gauss pour résoudre un système linéaire
- inversion d'une matrice :
 - le cas général en résolvant un système par pivot de Gauss
 - le cas général à partir d'une équation vérifiée par la matrice
- calcul d'une puissance $n^{\text{ième}}$ de matrice :
 - trouver la formule grâce aux premiers termes puis la prouver par récurrence
 - formule du binôme de Newton

4 Python

- Travail sur les listes et les tableaux (TP1)
- Simulation d'une expérience aléatoire grâce aux fonctions random et randint
- Travail sur les chaînes de caractères et les dictionnaires (TP4)
- Simulation des va qui suivent des lois discrètes usuelles et de leurs fonctions de répartition (TP5)

5 La question de cours

Voici quelques exemples (liste non exhaustive):

- 1. Définition d'une famille libre (u_1, \ldots, u_n) de vecteurs d'un espace vectoriel E.
- 2. Définition d'une famille génératrice d'un espace vectoriel.
- 3. Définition d'une base d'un espace vectoriel.
- 4. Définition de la dimension d'un espace vectoriel.
- 5. Définition de la matrice des coordonnées d'une famille de vecteurs dans une base.
- 6. Définition du rang d'une famille de vecteurs.
- 7. Définition des coordonnées d'un vecteur dans une base.
- 8. Propriétés reliant le rang d'une famille de vecteurs à son statut de famille libre ou génératrice dans un espace de dimension finie.
- 9. Énoncer la formule du binôme de Newton pour les matrices.
- 10. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,m}(\mathbb{K})$. On note $C = A \times B$. Quelle est la taille de C? Donner l'expression de ses coefficients.
- 11. Définir l'inversibilité d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$.
- 12. Déterminer la ligne de niveau truc de $f:(x,y)\longmapsto$ machin et en proposer une représentation.
- 13. Donner l'équation du plan tangent à une surface d'équation z = f(x, y) au point de coordonnées (x_0, y_0) .
- 14. Définir les points critiques d'une fonction de deux variables f.
- 15. ...