Fiche de révision 7 - Correction Fonctions de deux variables

1 Compétences et notions à maîtriser

- \triangleright C1 : Déterminer le domaine de définition d'une fonction de classe \mathcal{C}^1 , sa représentation graphique dans le plan
- \triangleright C2 : Maîtriser la notion *intuitive* de fonction de plusieurs variables de classe \mathcal{C}^1 , opérations sur les fonctions de classe \mathcal{C}^1
- ▷ C3 : Calculer les dérivées partielles d'une fonction de plusieurs variables
- $\,\rhd\,$ C4 : Manipuler une surface représentative, un plan tangent, des lignes de niveau
- ightharpoonup C5 : Déterminer la dérivabilité et la dérivée d'une fonction composée de la forme $t\longmapsto f(x(t),y(t))$
- $\,\rhd\,$ C6 : Déterminer un gradient et connaître lien avec la notion d'extremum
- ▷ C7 : Déterminer des dérivées partielles d'ordre deux, utiliser le théorème de symétrie de Schwartz
- ▷ C8 : Résoudre une équation aux dérivées partielles à plusieurs variables

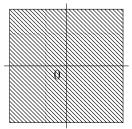
2 Correction des exercices

Exercice 1 (C1-C2-C3-C7) \Box 1. Pour chacune des fonctions f d'expressions suivantes :

- préciser le domaine de définition \mathcal{D}_f et le représenter dans le plan (sauf pour la question (d));
- calculer, aux points où elles existent, les dérivées partielles.
- (a) $f(x,y) = y^5 3xy$

La fonction f est polynomiale donc elle est définie et de classe \mathcal{C}^1 sur $\mathcal{D}_f = \mathbb{R}^2$ et :

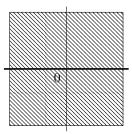
$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial f}{\partial x}(x,y) = -3y \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = 5y^4 - 3x$$



(b) $f(x,y) = \frac{x}{y}$

Le dénominateur s'annule pour y = 0. La fonction f est donc définie et de classe \mathcal{C}^1 sur $\mathcal{D}_f = \mathbb{R} \times \mathbb{R}^*$ comme quotient de fonctions polynomiales et :

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}^*, \qquad \frac{\partial f}{\partial x}(x,y) = \frac{1}{y} \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = -\frac{x}{y^2}$$

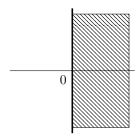


L'axe des abscisses n'appartient pas au domaine de définition de f.

(c) $f(x,y) = x^y$

L'expression de f est $f(x,y) = e^{y \ln(x)}$. Le domaine de définition de f est $\mathcal{D}_f = \mathbb{R}_+^* \times \mathbb{R}$ et la fonction f est de classe \mathcal{C}^1 sur \mathcal{D}_f par produit et composition de fonctions de classe \mathcal{C}^1 et :

$$\forall (x,y) \in \mathbb{R}_+^* \times \mathbb{R}, \qquad \frac{\partial f}{\partial x}(x,y) = yx^{y-1} \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = \ln(x)x^y$$



L'axe des ordonnées n'appartient pas au domaine de définition de f.

(d) $f(x, y, z) = x^2 e^z + xy^2 - e^{-xz}z$

Par produit et composition (de polynômes et d'exponentielles), la fonction f est définie et de classe \mathcal{C}^1 sur \mathbb{R}^3 et, pour tout $(x, y, z) \in \mathbb{R}^3$, on a :

$$\frac{\partial f}{\partial x}(x, y, z) = 2x e^{z} + y^{2} + z^{2} e^{-xz}, \qquad \frac{\partial f}{\partial y}(x, y, z) = 2xy$$

et:

$$\frac{\partial f}{\partial z}(x, y, z) = x^2 e^z + xz e^{-xz} - e^{-xz}$$

(e) $f(x,y) = \arctan\left(\frac{x}{x-y}\right)$

La fonction arctan est définie et de classe \mathcal{C}^1 sur \mathbb{R} donc, par composition et quotient de fonctions de classe \mathcal{C}^1 , la fonction f est définie et de classe \mathcal{C}^1 sur :

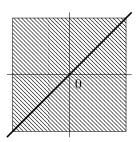
$$\mathcal{D}_f = \mathbb{R}^2 \setminus \{(x, y) \in \mathbb{R}^2 \mid x = y\}$$

Pour tout $(x, y) \in \mathcal{D}_f$, on a:

$$\frac{\partial f}{\partial x}(x,y) = \frac{\frac{(x-y)-x}{(x-y)^2}}{1 + \left(\frac{x}{x-y}\right)^2} = -\frac{y}{(x-y)^2 + x^2}$$

et

$$\frac{\partial f}{\partial y}(x,y) = \frac{\frac{x}{(x-y)^2}}{1 + \left(\frac{x}{x-y}\right)^2} = \frac{x}{(x-y)^2 + x^2}$$



La première bissectrice (i.e. la droite d'équation y = x) ne fait pas partie du domaine de définition de f.

(f) $f(x,y) = (x^2 + 1) e^{-x^2 y}$

Par produit et composition, la fonction f est définie et de classe \mathcal{C}^1 sur \mathbb{R}^2 et, pour tout $(x,y) \in \mathbb{R}^2$, on a :

$$\frac{\partial f}{\partial x}(x,y) = -2xy(x^2+1) e^{-x^2y} + 2x e^{-x^2y} \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = -x^2(x^2+1) e^{-x^2y}$$

- 2. Calculer les dérivées partielles secondes des fonctions f des questions 1.(a) et 1.(c) aux points où elles existent. Que remarque-t-on? Cette observation est-elle surprenante?
 - Pour la fonction f de la question 1.(a). Les dérivées partielles obtenues sont polynomiales donc de classe C^1 sur \mathbb{R}^2 et, pour tout $(x, y) \in \mathbb{R}^2$, on a :

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 0, \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = 20y^3, \qquad \frac{\partial^2 f}{\partial y \partial x}(x,y) = -3 \qquad \text{et} \qquad \frac{\partial^2 f}{\partial x \partial y}(x,y) = -3$$

Pour la fonction f de la question 1.(c).
 Les dérivées partielles obtenues sont de classe C¹ sur D_f par somme, produit et composition et, pour tout (x, y) ∈ D_f, on a :

$$\frac{\partial^2 f}{\partial x^2}(x,y) = y(y-1)x^{y-2}, \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = \ln(x)^2 x^y, \qquad \frac{\partial^2 f}{\partial y \partial x}(x,y) = x^{y-1} + y \ln(x)x^{y-1}$$

et:

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{1}{x} \times x^{y-1} y \ln(x) x^{y-1} = x^{y-1} + y \ln(x) x^{y-1}$$

Dans les deux cas, on obtient donc :

$$\forall (x,y) \in \mathcal{D}_f, \qquad \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y)$$

Ce résultat n'est pas surprenant car ces fonctions f sont de classe C^2 sur leurs domaines de définitions respectifs. Le théorème de symétrie de Schwartz assure sous cette condition l'égalité des dérivées croisées.

$$\frac{\partial n}{\partial t} = -D \frac{\partial^2 n}{\partial x^2} \tag{E}$$

1. Soit $A \in \mathbb{R}$. Montrer que pour tout $A \in \mathbb{R}$, la fonction $n:(x,t) \longmapsto \frac{A}{\sqrt{t}} e^{\frac{x^2}{4Dt}}$ est bien solution de (E).

Soit $A \in \mathbb{R}$. La fonction $t \longmapsto \frac{A}{\sqrt{t}}$ est de classe \mathcal{C}^2 sur \mathbb{R}_+^* et la fonction exponentielle est de classe \mathcal{C}^2 sur

 \mathbb{R} . De plus, la fonction $(x,t) \longmapsto -\frac{x^2}{4Dt}$ est de classe \mathcal{C}^2 sur $\mathbb{R} \times \mathbb{R}^*$ (donc sur $\mathbb{R} \times \mathbb{R}^*$) comme quotient de fonction polynomiales (le dénominateur ne s'annulant pas. Par composition et produit, la fonction f est donc de classe \mathcal{C}^2 sur $\mathbb{R} \times \mathbb{R}^*_+$. De plus, pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}^*_+$, on a :

$$\frac{\partial n}{\partial t}(x,t) = -\frac{A}{2t^{3/2}} e^{\frac{x^2}{4Dt}} - \frac{Ax^2}{4Dt^2\sqrt{t}} e^{\frac{x^2}{4Dt}}$$

et:

$$\frac{\partial n}{\partial x}(x,t) = \frac{Ax}{2Dt\sqrt{t}} e^{\frac{x^2}{4Dt}} \quad \text{puis} \qquad \frac{\partial^2 n}{\partial x^2}(x,t) = \frac{A}{2Dt\sqrt{t}} e^{\frac{x^2}{4Dt}} + \frac{Ax^2}{4D^2t^2\sqrt{t}} e^{\frac{x^2}{4Dt}}$$

et donc:

$$-D\frac{\partial^2 n}{\partial x^2}(x,t) = -\frac{A}{2t\sqrt{t}} e^{\frac{x^2}{4t}} - \frac{Ax^2}{4Dt^2\sqrt{t}} e^{\frac{x^2}{4Dt}} = \frac{\partial n}{\partial t}(x,t)$$

puisque $t^{3/2} = t\sqrt{t}$. Donc :

on a l'égalité
$$\frac{\partial n}{\partial t} = -D \frac{\partial^2 n}{\partial x^2}$$
 sur $\mathbb{R} \times \mathbb{R}_+^*$ donc n est solution de (E)

- 2. On considère ici la fonction n de la question 1 pour A=D=1.
 - (a) Pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$, calculer $\frac{\partial n}{\partial x}(x,t)$ et $\frac{\partial n}{\partial t}(x,t)$ en précisant leurs signes. Pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$, on a :

$$\frac{\partial n}{\partial t}(x,t) = -\frac{1}{2t^{3/2}} e^{\frac{x^2}{4t}} - \frac{x^2}{4t^2\sqrt{t}} e^{\frac{x^2}{4t}} \le 0$$

et:

$$\frac{\partial n}{\partial x}(x,t) = \frac{x}{2t\sqrt{t}} e^{\frac{x^2}{4t}}$$

qui est du signe de x.

(b) Sur un même dessin, proposer sur \mathbb{R}_+ des représentations graphique de :

$$n_1: x \longmapsto n(x, t_1)$$
 et $n_2: x \longmapsto n(x, t_2)$

pour $0 < t_1 < t_2$.

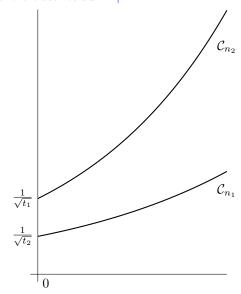
Soit $(t_1, t_2) \in (\mathbb{R}_+^*)^2$ tel que $t_1 < t_2$. On a vu à la question 2a que :

$$\forall (x,t) \in \mathbb{R}_+ \times \mathbb{R}_+^*, \qquad \frac{\partial n}{\partial t}(x,t) \leqslant 0$$

Cela signifie que, pour $x \in \mathbb{R}_+$ fixé, la fonction $t \longmapsto n(x,t)$ est décroissante sur \mathbb{R}_+ . Par conséquent, le graphe de la fonction $n_1: x \longmapsto n(x,t_1)$ est au-dessus de celui de la fonction $n_2: x \longmapsto n(x,t_2)$ (puisque $t_1 < t_2$). Par ailleurs, on sait aussi (*cf.* question 2a) que :

$$\forall (x,t) \in \mathbb{R}_+ \times \mathbb{R}_+^*, \qquad \frac{\partial n}{\partial x}(x,t) \geqslant 0$$

donc les fonctions n_1 et n_2 sont croissante sur \mathbb{R}_+ .



Exercice 3 (C4) Soit la fonction f d'expression $f(x,y) = x e^{xy}$.

1. Déterminer l'équation du plan tangent à la surface représentative de f au point (1,0). Les fonctions $(x,y) \longmapsto xy$ et $(x,y) \longmapsto x$ sont polynomiales donc de classe \mathcal{C}^1 sur \mathbb{R}^2 et comme la fonction exponentielle est de classe \mathcal{C}^1 sur \mathbb{R} , on obtient par composition et produit que la fonction f est de classe \mathcal{C}^1 sur \mathbb{R}^2 . En particulier, elle est de classe \mathcal{C}^1 au point (1,0). La surface représentative \mathcal{S} de f présente donc au point de coordonnées (1,0) un plan tangent P. Celui-ci a pour équation :

$$\mathbf{P}: z = f(1,0) + \frac{\partial f}{\partial x}(1,0)(x-1) + \frac{\partial f}{\partial y}(1,0)y$$

Or:

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial f}{\partial x}(x,y) = e^{xy} + xy e^{xy} \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = x^2 e^{xy}$$

et donc:

$$\frac{\partial f}{\partial x}(1,0) = 1 \qquad \text{et} \qquad \frac{\partial f}{\partial y}(1,0) = 1$$

Donc P: z = x + y

2. En déduire une valeur approchée de f(1,1;-0,1). Le point (1,1;-0;1) est proche du point (1,0). Une approximation de f(1,1;-0,1) est donc donnée par la côte du point de coordonnées (1,1;-0,1) sur le plan tangent P. Donc :

une approximation de
$$f(1,1;-0,1)$$
 est $f(1,1;-0,1)\approx 1, 1+(-0,1)=1$

Exercice 4 (C5) \square Dans chacun des cas, calculer la dérivée de la fonction g en précisant l'intervalle de dérivabilité.

1. $f(x,y) = e^{x+2y}$ et $g(t) = f(\cos(t), t^3)$ La fonction $(x,y) \longmapsto x+2y$ est de classe \mathcal{C}^1 sur \mathbb{R}^2 (car polynomiale) tandis que la fonction exponentielle est de classe \mathcal{C}^1 sur \mathbb{R} . Par composition, la fonction f est donc de classe \mathcal{C}^1 sur \mathbb{R}^2 . De plus, les fonctions $t \longmapsto \cos(t)$ et $t \longmapsto t^3$ sont de classe \mathcal{C}^1 sur \mathbb{R} (et on a $(\cos(t), t^3) \in \mathbb{R}^2$ pour tout $t \in \mathbb{R}$) donc, par composition, la fonction g est de classe \mathcal{C}^1 (et donc dérivable) sur \mathbb{R} et :

$$\forall t \in \mathbb{R}, \qquad g'(t) = -\frac{\partial f}{\partial x}(\cos(t), t^3)\sin(t) + 3\frac{\partial f}{\partial y}(\cos(t), t^3)t^2 = -\sin(t) e^{\cos(t) + 2t^3} + 6t^2 e^{\cos(t) + 2t^3}$$

COMMENTAIRE

On rappelle le théorème de dérivabilité d'une composée à partir d'une fonction de deux variables. Soient :

- 1. f est une fonction de classe \mathcal{C}^1 sur un sous-ensemble \mathcal{D} de \mathbb{R}^2 ;
- 2. x et y deux fonctions de classe \mathcal{C}^1 sur un intervalle I de \mathbb{R} ;
- 3. on suppose de plus que pour tout $t \in I$, on a $(x(t), y(t)) \in \mathcal{D}$ (hypothèse de composition).

Alors la fonction (d'une seule variable) $g: t \mapsto f(x(t), y(t))$ est de classe \mathcal{C}^1 (donc dérivable sur I) et:

$$\forall t \in I, \qquad g'(t) = \frac{\partial f}{\partial x}(x(t), y(t))x'(t) + \frac{\partial f}{\partial y}(x(t), y(t))y'(t)$$

Ce théorème a surtout un intérêt si la fonction de deux variables f n'est pas explicite. Dans le cas contraire, on peut effectivement considérer directement la fonction d'une seule variable. En effet, on a dans cette question :

$$q: t \longmapsto e^{\cos(t) + 2t^3}$$

Cette fonction est clairement dérivable sur \mathbb{R} par composition et on peut calculer facilement sa dérivée. Pour la question 4., il faut appliquer le théorème ci-dessus.

Dans le corrigé de cet exercice, on applique à chaque fois le théorème (essentiellement pour le mettre en œuvre) mais on peut faire l'autre méthode évoquée ci-dessus.

2. $f(x,y) = \ln(1+xy)$ et $g(t) = f(\sqrt{t},t^2)$ Le domaine de définition de f est $\mathcal{D}_f = \{(x,y) \in \mathbb{R}^2 \mid xy > -1\}$. La fonction f est de classe \mathcal{C}^1 sur \mathcal{D}_f par composition. De plus, les fonctions $t \mapsto \sqrt{t}$ et $t \mapsto t^2$ sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* et, pour tout $t \in \mathbb{R}_+^*$, on a $(\sqrt{t},t^2) \in \mathcal{D}_f$ puisque $\sqrt{t}t^2 > 0 > -1$. Par composition, la fonction g est donc de classe \mathcal{C}^1 (donc dérivable) sur \mathbb{R}_+^* et:

$$\forall t \in \mathbb{R}_+^*, \qquad g'(t) = \frac{1}{2\sqrt{t}} \frac{\partial f}{\partial x}(\sqrt{t}, t^2) + 2t \frac{\partial f}{\partial y}(\sqrt{t}, t^2) = \frac{t^2}{2\sqrt{t}(1+t^{3/2})} + \frac{2t^{3/2}}{1+t^{3/2}}$$

3. $f(x,y) = x^2 + e^y + xy$ et $g(t) = f(e^t, \sin(t))$ En procédant comme dans la question 1., on obtient que g est dérivable sur \mathbb{R} et :

$$\forall t \in \mathbb{R}, \qquad g'(t) = (2e^t + \sin(t))e^t + (e^{\sin(t)} + e^t)\cos(t)$$

4. f est une fonction de classe \mathcal{C}^1 sur $\mathbb{R}_+^* \times \mathbb{R}$ et $g(t) = f(e^t, -t^2)$ La fonction f est de classe \mathcal{C}^1 sur $\mathbb{R}_+^* \times \mathbb{R}$ par hypothèse et les fonction $t \longmapsto e^t$ et $t \longmapsto -t^2$ sont de classe \mathcal{C}^1 sur \mathbb{R} . De plus, pour tout $t \in \mathbb{R}$, on a $(e^t, -t^2) \in \mathbb{R}_+^* \times \mathbb{R}$. Par composition, la fonction g est donc de classe \mathcal{C}^1 sur \mathbb{R} et :

$$\forall t \in \mathbb{R}, \qquad g'(t) = e^t \frac{\partial f}{\partial x}(e^t, -t^2) - 2t \frac{\partial f}{\partial u}(e^t, -t^2)$$

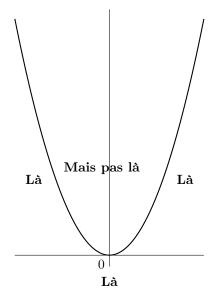
Exercice 5 (C1-C4) On considère les fonctions :

$$f:(x,y)\longmapsto \ln(x^2-y)$$
 et $g:(x,y)\longmapsto \frac{y}{x^2+y^2-1}$

1. Déterminer et représenter dans le plan les domaines de définition de f et de g. La fonction ln est définie sur \mathbb{R}_+^* donc le domaine de définition de f est :

$$\mathcal{D}_f = \left\{ (x, y) \in \mathbb{R}^2 \,\middle|\, y < x^2 \right\}$$

Graphiquement, \mathcal{D}_f est la région du plan situé strictement en dessous de la parabole d'équation $y=x^2$.



Notons \mathcal{D}_q le domaine de définition de g. Soit $(x,y) \in \mathbb{R}^2$. Alors :

$$(x,y)\in\mathcal{D}_g\iff x^2+y^2\neq 1\iff M(x,y)$$
 n'appartient pas au cercle trigonométrique

Donc $\mathcal{D}_g = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \neq 1\}$ ce qui correspond géométriquement à l'intérieur et à l'extérieur du cercle trigonométrique. Autrement dit, \mathcal{D}_g est \mathbb{R}^2 privé de ce cercle.

2. Soit $k \in \mathbb{R}$. Déterminer la courbe (ou « ligne ») de niveau k de f et en proposer une représentation graphique. Même question pour la fonction g.

Soit $k \in \mathbb{R}$. On note \mathcal{L}_k la ligne de niveau k de f. Il s'agit de l'intersection de la surface représentative de f (ou de g) avec le plan horizontal d'équation z = k.

• Lignes de niveaux de la fonction f.

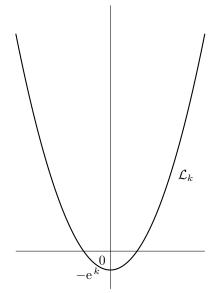
Soit $(x,y) \in \mathcal{D}_f$. En utilisant la stricte croissance de la fonction exponentielle sur \mathbb{R} , on a :

$$f(x,y) = k \iff x^2 - y = e^k \iff y = x^2 - e^k$$

Donc:

$$\mathcal{L}_k = \{(x, y) \in \mathbb{R}^2 \mid y = x^2 - e^k \}$$

On obtient la représentation graphique suivante :



• Lignes de niveaux de la fonction g.

Soit $(x, y) \in \mathcal{D}_g$. Alors:

$$(x,y) \in \mathcal{L}_k \iff k(x^2 + y^2 - 1) = y \iff kx^2 + ky^2 - y - k = 0$$

On distingue deux cas. Si k = 0, alors :

$$(x,y) \in \mathcal{L}_0 \iff y = 0$$

et donc $\mathcal{L}_0 = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$. Autrement dit, \mathcal{L}_0 est l'axe des abscisses (faire le dessin). On suppose que $k \neq 0$. Alors :

$$(x,y) \in \mathcal{L}_k \iff k(x^2 + y^2 - 1) = y \iff kx^2 + ky^2 - y - k = 0$$

$$\iff x^2 + y^2 - \frac{y}{k} - 1 = 0$$

$$\iff x^2 + \left(y - \frac{1}{2k}\right)^2 - \frac{1}{4k^2} - 1 = 0$$

$$\iff x^2 + \left(y - \frac{1}{2k}\right)^2 = \frac{4k^2 + 1}{4k^2}$$

Comme $\frac{4k^2+1}{4k^2} > 0$, la ligne de niveau \mathcal{L}_k est donc le cercle de centre $\Omega_k\left(0,\frac{1}{2k}\right)$ et de rayon $\frac{\sqrt{4k^2+1}}{2|k|}$.

Graphiquement, le centre du cercle peut-être en dessous ou au dessus de l'axe des abscisses (suivant le signe de k). Dans les deux cas, le cercle peut bien sûr couper l'axe des abscisses et/ou l'axe des ordonnées.

7

Exercice 6 (C2-C6) Les questions 1. et 2. sont indépendantes.

1. On considère la fonction :

$$f:(x,y) \longmapsto x^2 + y^2 - 2x - 4y$$

(a) Déterminer le gradient de f.

La fonction f est polynomiale donc elle est de classe C^1 sur $\mathbb R$ et :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial f}{\partial x}(x,y) = 2x - 2 \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = 2y - 4$$

Donc le gradient de f est défini par :

$$\forall (x,y) \in \mathbb{R}^2, \quad \overrightarrow{\operatorname{grad}} f(x,y) = (2x-2,2y-4)$$

(b) En quel point la fonction f peut-elle admettre un extremum?

On sait que si la fonction f présente un extremum en un point, alors le gradient de f est nul en ce point. Déterminons donc le ou les éventuels points d'annulation du gradient de f. Clairement :

$$\forall (x,y) \in \mathbb{R}^2$$
, $\overrightarrow{\operatorname{grad}} f(x,y) = (0,0) \iff x = 1 \text{ et } y = 2$

Donc:

si f présente un extremum, alors celui-ci est atteint au point de coordonnées (1,2)

(c) Montrer que pour tout $(x,y) \in \mathbb{R}^2$, on a $f(x,y) \ge -5$ et conclure. On a f(1,2) = -5. De plus :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = (x-1)^2 - 1 + (y-2)^2 - 4 = (x-1)^2 + (y-2)^2 - 5 \ge -5 \quad \text{car } (x-1)^2 + (y-2)^2 \ge 0$$

On a donc :

$$\forall (x,y) \in \mathbb{R}^2, \qquad f(x,y) \geqslant f(1,2)$$

Finalement:

la fonction f présente un minimum au point de coordonnées (1,2) qui vaut -5

2. La fonction $f: x \longmapsto x^3 + x^2y$ admet-elle un extremum? Justifier. La fonction f est de classe \mathcal{C}^1 sur \mathbb{R}^2 car elle est polynomiale. De plus :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial f}{\partial x}(x,y) = 4x^2 \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = x^2$$

et donc le gradient de f s'annule si et seulement si x = 0. Si f présente un extremum, alors il est atteint en un point dont les coordonnées sont de la forme $(0, y_0)$ où $y_0 \in \mathbb{R}$.

Soit $y_0 \in \mathbb{R}$. Alors $f(0, y_0) = 0$. On distingue trois cas:

* Premier cas : $y_0 = 0$.

On a f(1,0) = 1 > f(0,0) donc f ne présente pas de maximum en (0,0) et f(-1,0) = -1 < f(0,0)donc f ne présente pas de minimum en (0,0).

* Deuxième cas : $y_0 > 0$.

On a $f(y_0, 0) = y_0^3$ et $f(-y_0, 0) = -y_0^3$ donc $f(-y_0, 0) < f(0, y_0) < f(y_0, 0)$. La fonction f ne présente ni minimum, ni maximum en $(0, y_0)$.

* Troisième cas : $y_0 < 0$.

On a cette fois $f(y_0,0) = y_0^3 < 0$ et $f(-y_0,0) = -y_0^3 > 0$ donc la fonction f ne présente ni minimum, ni maximum en $(0, y_0)$.

Finalement:

la fonction f ne présente pas d'extremum sur \mathbb{R}^2 .

Exercice 7 (C2-C6) \square On considère la fonction $f:(x,y)\longmapsto \frac{y}{1+x^2+y^2}$ définie sur \mathbb{R}^2 .

1. Déterminer le gradient de f et préciser les points critiques de cette fonction. La fonction f est de classe \mathcal{C}^1 sur \mathbb{R}^2 et :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial f}{\partial x}(x,y) = \frac{-2xy}{(1+x^2+y^2)^2} \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = \frac{(1+x^2+y^2)-y\times 2y}{(1+x^2+y^2)^2} = \frac{1+x^2-y^2}{(1+x^2+y^2)^2}$$

donc:

$$\forall (x,y) \in \mathbb{R}^2, \quad \overrightarrow{\text{grad}} f(x,y) = \left(\frac{-2xy}{(1+x^2+y^2)^2}, \frac{1+x^2-y^2}{(1+x^2+y^2)^2}\right)$$

Soit $(x, y) \in \mathbb{R}^2$. On résout :

$$\overrightarrow{\operatorname{grad}}f(x,y) = (0,0) \iff \begin{cases} -2xy = 0 \\ 1 + x^2 - y^2 = 0 \end{cases} \iff (x = 0 \text{ et } y = \pm 1) \text{ ou } \underbrace{(y = 0 \text{ et } x^2 = -1)}_{\text{impossible}}$$

Ainsi:

les points critiques de f sont (0,-1) et (0,1)

2. Montrer que:

$$\forall (x,y) \in \mathbb{R}^2, \qquad -\frac{1}{2} \leqslant f(x,y) \leqslant \frac{1}{2}$$

Soit $(x, y) \in \mathbb{R}^2$. Alors:

$$f(x,y) + \frac{1}{2} = \frac{y}{1+x^2+y^2} + \frac{1}{2} = \frac{2y+1+x^2+y^2}{2(1+x^2+y^2)} = \frac{(y+1)^2+x^2}{2(1+x^2+y^2)} \ge 0$$

La deuxième inégalité se démontre de la même manière. Ainsi :

$$\forall (x,y) \in \mathbb{R}^2, \qquad -\frac{1}{2} \leqslant f(x,y) \leqslant \frac{1}{2}$$

3. Conclure quant à l'existence d'extremums pour la fonction f.

On remarque que $f(0,1) = \frac{1}{2}$ et $f(0,-1) = -\frac{1}{2}$. L'inégalité obtenue à la question 2. se réécrit donc :

$$\forall (x,y) \in \mathbb{R}^2, \qquad f(0,-1) \leqslant f(x,y) \leqslant f(0,1)$$

Ainsi:

la fonction f présente un minimum au point (0,-1) et un maximum au point (0,1)

Exercice 8 (C1-C2-C6) \square Pour tout $(x,y) \in \mathbb{R}^2$, on pose :

$$g(x,y) = (x+y) e^{-(x^2+y^2)}$$

1. Calculer le gradient de g. Quelles sont les valeurs de (x,y) susceptibles d'être des extremums pour g? Les fonctions $(x,y) \longmapsto x^2 + y^2$ et $(x,y) \longmapsto x + y$ sont polynomiales donc de classe \mathcal{C}^1 sur \mathbb{R}^2 . De plus, la fonction exponentielle est de classe \mathcal{C}^1 sur \mathbb{R} . Par composition et produit, la fonction g est donc de classe \mathcal{C}^1 sur \mathbb{R}^2 et :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial g}{\partial x}(x,y) = \left(1 - 2x^2 - 2xy\right) \,\mathrm{e}^{-(x^2 + y^2)} \qquad \text{et} \qquad \frac{\partial g}{\partial y}(x,y) = \left(1 - 2xy - 2y^2\right) \,\mathrm{e}^{-(x^2 + y^2)}$$

Donc le gradient de f est défini par :

$$\forall (x,y) \in \mathbb{R}^2$$
, $\overrightarrow{\text{grad}} g(x,y) = ((1 - 2x^2 - 2xy) e^{-(x^2 + y^2)}, (1 - 2xy - 2y^2) e^{-(x^2 + y^2)})$

Soit $(x,y) \in \mathbb{R}^2$. On sait que si la fonction g présente un extremum en (x,y), alors $\overrightarrow{\text{grad}} g(x,y) = (0,0)$. On résout donc :

$$\overrightarrow{\operatorname{grad}} g(x,y) = (0,0) \iff \left\{ \begin{array}{l} 2x^2 + 2xy = 1 & \operatorname{L}_1 \\ 2xy + 2y^2 = 1 & \operatorname{L}_2 \end{array} \right. \iff \left\{ \begin{array}{l} 2x^2 + 2xy = 1 & \operatorname{L}_1 \\ 2(x-y)(x+y) = 0 & \operatorname{L}_2 \leftarrow \operatorname{L}_1 - \operatorname{L}_2 \end{array} \right.$$

$$\iff \left\{ \begin{array}{l} 2x^2 + 2xy = 1 & \operatorname{ou} \\ y = x & \operatorname{ou} \end{array} \right. \left\{ \begin{array}{l} 2x^2 + 2xy = 1 \\ y = -x \end{array} \right.$$

$$\iff \left\{ \begin{array}{l} x = \pm \frac{1}{2} \\ y = x & \operatorname{ou} \end{array} \right. \left\{ \begin{array}{l} 0 = 1 \\ y = -x \end{array} \right.$$

$$\iff (x,y) = \left(-\frac{1}{2}, -\frac{1}{2} \right) \operatorname{ou} (x,y) = \left(\frac{1}{2}, \frac{1}{2} \right)$$

car le second système n'admet pas de solution. On en déduit que :

les points en lesquels la fonction
$$g$$
 peut admettre un extremum sont $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ et $\left(\frac{1}{2}, \frac{1}{2}\right)$

2. Soit $r \in \mathbb{R}_+$. Quels sont les maximum M(r) et minimum m(r) de g sur le cercle C_r de centre O(0,0) et de rayon r?

On rappelle qu'un point M du plan (rapporté à un repère orthogonal (O, \vec{i}, \vec{j})) est caractérisé de manière unique par ses coordonnées polaires (r, θ) où r = OM et $\theta = (\overrightarrow{i}, \overrightarrow{OM}) \mod 2\pi$.

Soit $r \in \mathbb{R}_+$. Si M(x,y) appartient au cercle de centre O et de rayon r, alors son affixe est de la forme

$$r e^{i theta} = r \cos(\theta) + i r \sin(\theta)$$

pour un certain nombre réel θ . Autrement dit :

$$\forall (x,y) \in \mathbb{R}^2, \qquad M(x,y) \in \mathcal{C}_r \iff \exists \theta \in \mathbb{R}, \ (x,y) = (r\cos(\theta), r\sin(\theta))$$

Ainsi, recherche les minimum et maximum de g sur le cercle \mathcal{C}_r revient à cherche les minimum et maximum de la fonction $\theta \longmapsto g(r\cos(\theta), r\sin(\theta))$ sur \mathbb{R} . Soit $\theta \in \mathbb{R}$. Alors :

$$g(r\cos(\theta), r\sin(\theta)) = r(\cos(\theta) + \sin(\theta)) e^{-r^2(\cos(\theta)^2 + \sin(\theta)^2)} = r(\cos(\theta) + \sin(\theta)) e^{-r^2}$$

Or:

$$\cos(\theta) + \sin(\theta) = \sqrt{2} \left(\cos(\theta) \frac{\sqrt{2}}{2} + \sin(\theta) \frac{\sqrt{2}}{2} \right)$$
$$= \sqrt{2} \left(\cos(\theta) \cos\left(\frac{\pi}{4}\right) + \sin(\theta) \sin\left(\frac{\pi}{4}\right) \right)$$
$$= \sqrt{2} \cos\left(\theta - \frac{\pi}{4}\right)$$

Finalement:

$$\forall \theta \in \mathbb{R}, \qquad g(r\cos(\theta), r\sin(\theta)) = \sqrt{2}\cos\left(\theta - \frac{\pi}{4}\right)re^{-r^2}$$

Comme $\sqrt{2}r \,\mathrm{e}^{-r^2} \geqslant 0$, pour minimiser et maximiser l'expression précédente, il suffit de minimiser maximiser $\cos\left(\theta-\frac{\pi}{4}\right)$. Or ce cosinus vaut au minimum -1 par exemple si $\theta=\frac{5\pi}{4}$ et au maximum 1 par exemple si $\theta=\frac{\pi}{4}$. On en conclut donc que (avec les notations de l'énoncé) :

$$m(r) = -\sqrt{2}r e^{-r^2}$$
 et $M(r) = \sqrt{2}r e^{-r^2}$

3. Étudier les variations de M et de m sur \mathbb{R}_+ .

Étudions les variations de M sur \mathbb{R}_+ . Cette fonction est dérivable sur \mathbb{R}_+ (sur \mathbb{R} même) par produit et composition de fonction dérivables et :

$$\forall m \in \mathbb{R}_+, \qquad M'(r) = \sqrt{2}(1 - 2r^2) e^{-r^2} = \sqrt{2}\left(1 - r\sqrt{2}\right)\left(1 + r\sqrt{2}\right) e^{-r^2}$$

On en déduit le tableau de signes de M et de variations de m et M suivants :

r	$0 \qquad \qquad \frac{\sqrt{2}}{2} \qquad \qquad +\infty$
M'(r)	+ 0 -
M	$e^{-1/2}$
m	$0 - e^{-1/2}$

4. En déduire que g admet un maximum et un minimum global sur \mathbb{R}^2 .

Posons $M=\mathrm{e}^{-1/2}$. Alors $M=M\left(\frac{\sqrt{2}}{2}\right)$. D'après la question 2., M est le maximum de la fonction g sur le cercle $\mathcal{C}_{\sqrt{2}/2}$. Remarquons qu'il est atteint au point $\left(\frac{1}{2},\frac{1}{2}\right)$. D'après la question 3., on sait aussi que :

$$\forall r \in \mathbb{R}_+, \qquad M \geqslant M(r) \qquad \text{c'est-\`a-dire} \qquad f\left(\frac{1}{2},\frac{1}{2}\right) \geqslant M(r)$$

Comme la réunion des cercles de centre O et de rayon r (où $r \in \mathbb{R}_+$) forme une partition de \mathbb{R}^2 , c'est-à-dire $\mathbb{R}^2 = \bigcup_{r \geq 0} C_r$, l'inégalité précédente se réécrit :

$$\forall (x,y) \in \mathbb{R}^2, \qquad f\left(\frac{1}{2}, \frac{1}{2}\right) \geqslant f(x,y)$$

De la même manière :

$$\forall (x,y) \in \mathbb{R}^2, \qquad f\left(-\frac{1}{2}, -\frac{1}{2}\right) \leqslant f(x,y)$$

Finalement:

f présente un maximum (respectivement minimum) sur \mathbb{R}^2 en $\left(\frac{1}{2}, \frac{1}{2}\right)$ (respectivement $\left(-\frac{1}{2}, -\frac{1}{2}\right)$) qui vaut $e^{-1/2}$ (respectivement $-e^{-1/2}$)

11

Exercice 9 (C1-C2-C8) \square Notons (E) chacune des équations aux dérivées partielles proposées et \mathcal{S}_E son ensemble de solution. Si \mathcal{D} est un sous-ensemble de \mathbb{R} , on notera $\mathcal{F}(\mathcal{D},\mathbb{R})$ l'ensemble des fonctions définies sur \mathcal{D}

1. Déterminer les fonctions f de classe \mathcal{C}^1 sur \mathbb{R}^2 telles que :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial f}{\partial y}(x,y) = \sin(y)^2 + x$$

D'après la formule de duplication du cosinus, on sait que :

$$\forall y \in \mathbb{R}, \quad \sin(y)^2 = \frac{1}{2} - \frac{\cos(2y)}{2}$$

Pour toute function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, on a:

$$f \in \mathcal{S}_E \iff \forall (x,y) \in \mathbb{R}^2, \ \frac{\partial f}{\partial y}(x,y) = \frac{1}{2} - \frac{\cos(2y)}{2} + x$$

$$\iff \exists g \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \ \forall (x,y) \in \mathbb{R}^2, \ f(x,y) = \frac{y}{2} - \frac{\sin(2y)}{4} + xy + g(x)$$

Donc:

$$\mathcal{S}_E = \left\{ (x, y) \in \mathbb{R}^2 \longmapsto \frac{y}{2} - \frac{\sin(2y)}{4} + xy + g(x) \mid g \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \right\}$$

2. Déterminer les fonctions f de classe \mathcal{C}^1 sur \mathbb{R}^2 telles que :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial f}{\partial x}(x,y) = \cos(x) + 2y$$

Pour toute fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, on a:

$$f \in \mathcal{S}_E \iff \exists g \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \ \forall (x, y) \in \mathbb{R}^2, \ f(x, y) = \sin(x) + 2xy + g(y)$$

et donc:

$$\mathcal{S}_E = \left\{ (x,y) \in \mathbb{R}^2 \longmapsto \sin(x) + 2xy + g(y) \mid g \in \mathcal{F}(\mathbb{R},\mathbb{R}) \right\}$$

3. Déterminer les fonctions f de classe \mathcal{C}^1 sur $(\mathbb{R}_+^*)^2$ telles que :

$$\forall (x,y) \in (\mathbb{R}_+^*)^2, \qquad \frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}} \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$$

Soit $f:(\mathbb{R}_+)^2 \longrightarrow \mathbb{R}$. Alors:

$$\forall (x,y) \in (\mathbb{R}_+^*)^2, \ \frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}} \iff \exists g \in \mathcal{C}^1(\mathbb{R}_+^*,\mathbb{R}), \ \forall (x,y) \in (\mathbb{R}_+^*)^2, \ f(x,y) = \sqrt{x^2 + y^2} + g(y)$$

et, pour une fonction de cette forme :

$$\forall (x,y) \in (\mathbb{R}_+^*)^2, \ \frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} \iff \forall y \in (\mathbb{R}_+^*, \ g'(y) = 0$$
$$\iff g : \mathbb{R} \longmapsto \mathbb{R} \text{ est une fonction constante}$$

Ainsi:

$$\mathcal{S}_E = \left\{ (x, y) \in \mathbb{R}^2 \longmapsto \sqrt{x^2 + y^2} + C \middle| C \in \mathbb{R} \right\}$$

4. Déterminer les fonctions f de classe \mathcal{C}^2 sur \mathbb{R}^2 telles que :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial^2 f}{\partial x \partial y}(x,y) = x^2 + y^2$$

Pour toute fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, on a:

$$f \in \mathcal{S}_E \iff \exists g \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \ \forall (x, y) \in \mathbb{R}^2, \ \frac{\partial f}{\partial y}(x, y) = \frac{x^3}{3} + y^2 x + g(y)$$
$$\iff \exists (g, h) \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \times \mathcal{F}(\mathbb{R}, \mathbb{R}), \ \forall (x, y) \in \mathbb{R}^2, \ f(x, y) = \frac{x^3 y}{3} + \frac{y^3 x}{3} + g(y) + h(x)$$

Donc:

$$\mathcal{S}_E = \left\{ (x, y) \in \mathbb{R}^2 \longmapsto \frac{x^3 y}{3} + \frac{y^3 x}{3} + g(y) + h(x) \,\middle|\, (g, h) \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \times \mathcal{F}(\mathbb{R}, \mathbb{R}) \right\}$$

5. Déterminer les fonctions f de classe \mathbb{C}^2 sur \mathbb{R}^2 telles que :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = 0$$

Pour toute fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, on a:

$$f \in \mathcal{S}_E \iff \exists g \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \ \forall (x, y) \in \mathbb{R}^2, \ \frac{\partial f}{\partial y}(x, y) = g(x)$$

 $\iff \exists (g, h) \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \ \forall (x, y) \in \mathbb{R}^2, \ f(x, y) = g(x)y + h(x)$

Donc:

$$\mathcal{S}_E = \left\{ (x, y) \in \mathbb{R}^2 \longmapsto g(x)y + h(x) \mid (g, h) \in \mathcal{F}(\mathbb{R}, \mathbb{R})^2 \right\}$$

6. Déterminer les fonctions f de classe \mathcal{C}^1 sur \mathbb{R}^2 telles que :

$$\forall (x,y) \in \mathbb{R}^2, \qquad \frac{\partial f}{\partial y}(x,y) - f(x,y) = x \qquad \text{et} \qquad f(x,0) = 1 - x$$

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Alors:

$$f \in \mathcal{S}_E \iff$$
 pour tout $x \in \mathbb{R}$, f est solution du problème de Cauchy $\mathcal{C}_x : \left\{ \begin{array}{l} \frac{\partial f}{\partial y}(x,y) - f(x,y) = x \\ f(x,0) = 1 - x \end{array} \right.$

Fixons $x \in \mathbb{R}$ et résolvons le problème de Cauchy \mathcal{C}_x . L'équation différentielle (en y) est linéaire du premier ordre à coefficients constants. Son ensemble de solutions est :

$$\left\{ y \longmapsto C(x) e^{y} - x \mid C \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \right\}$$

Déterminons la fonction C répondant au problème de Cauchy. Soient $C \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ et $f:(x,y) \mapsto C(x) e^y - x$. Alors :

$$f(x,0) = 1 - x \iff C(x) - x = 1 - x \iff C(x) = 1$$

Donc
$$S_E = \{(x, y) \longmapsto e^y - x\}$$

$$\forall (x,y) \in]0,1[^2, \qquad f_k(x,y) = x^k y - xy^k$$

De plus, g_k et φ_k désignent les fonctions définies par :

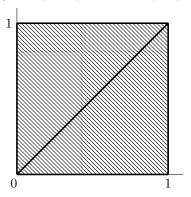
$$g_k(x,y) = \frac{f_k(x,y)}{x-y}$$
 et $\varphi_k(x) = g_k(x,1-x)$

1. Représenter à l'aide d'un schéma l'ensemble de définition de g_k noté \mathcal{D}_1 puis déterminer l'ensemble de définition de φ_k noté \mathcal{D}_2 .

La fonction f_k est polynomiale donc elle est définie sur \mathbb{R}^2 et donc sur $]0,1[^2$. Par quotient, le domaine de définition de g_k est donc :

$$\mathcal{D}_1 = \{ (x, y) \in \mathbb{R}^2 \mid x \neq y \}$$

Les bords du carrés, ainsi que la diagonale principale, ne font pas partie de \mathcal{D}_1 .



Soit $(x, y) \in \mathbb{R}^2$. Alors:

$$(x,y) \in \mathcal{D}_2 \iff (x,1-x) \in \mathcal{D}_1 \iff x \in]0,1[, 1-x \in]0,1[\text{ et } x \neq 1-x$$

$$\iff x \in \left]0,\frac{1}{2}\right[\cup \left]\frac{1}{2},1\right[$$

$$\mathrm{Donc}\left[\mathcal{D}_2 = \left]0, \frac{1}{2}\right[\cup \left]\frac{1}{2}, 1\right[\right].$$

- 2. On cherche la limite de la fonction φ_k en $\frac{1}{2}$.
 - (a) Calculer les dérivées partielles de f_k en tout $(x,y) \in]0,1[^2$ (on admet que f_k est de classe \mathcal{C}^1 sur $]0,1[^2)$ et en déduire le nombre dérivé de $x \longmapsto f_k(x,1-x)$ au point $\frac{1}{2}$. Soit $(x,y) \in]0,1[^2$. Alors:

$$\boxed{\frac{\partial f}{\partial x}(x,y) = kx^{k-1}y - y^k \quad \text{et} \quad \frac{\partial f}{\partial y}(x,y) = x^k - kxy^{k-1}}$$

Les fonctions $x \mapsto x$ et $x \mapsto 1-x$ sont de classe \mathcal{C}^1 sur]0,1[et la fonction f_k est de classe \mathcal{C}^1 sur]0,1[(cela est indiqué dans l'énoncé même si on le sait que f_k est polynomiale). De plus, pour tout $x \in]0,1[$, on a $(x,1-x) \in]0,1[^2$. D'après la théorème de composition, la fonction $x \mapsto f_k(x,1-x)$, notée h, est donc de classe \mathcal{C}^1 sur]0,1[et on a :

$$\forall x \in]0,1[, \qquad h'(x) = \frac{\partial f_k}{\partial x}(x,1-x) \times 1 + \frac{\partial f_k}{\partial x}(x,1-x) \times (-1)$$

En particulier, h est donc dérivable en $\frac{1}{2}$ et (en remplaçant) :

$$h'\left(\frac{1}{2}\right) = 2(k-1)\left(\frac{1}{2}\right)^k = \frac{k-1}{2^{k-1}}$$

14

(b) En déduire que :

$$\lim_{x \to \frac{1}{2}} \varphi_k(x) = \frac{k-1}{2^k}$$

Soit $x \in \mathcal{D}_2$. Alors:

$$\varphi_k(x) = g_k(x, 1 - x) = \frac{f_k(x, 1 - x)}{x - (1 - x)} = \frac{h(x)}{2x - 1} = \frac{1}{2} \times \frac{h(x) - h\left(\frac{1}{2}\right)}{x - \frac{1}{2}}$$

puisque $h\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^k - \left(\frac{1}{2}\right)^k = 0$. Or la fonction h est dérivable en $\frac{1}{2}$ dont le taux d'accroissement précédent admet pour limite $h'\left(\frac{1}{2}\right)$ et donc :

la fonction
$$\varphi_k$$
 admet une limite en $\frac{1}{2}$ qui vaut $\frac{1}{2}h'\left(\frac{1}{2}\right) = \frac{k-1}{2^k}$