Corrigé DM4

1. **a**. On utilise la formule de récurrence qui définit la suite $(u_n)_n$:

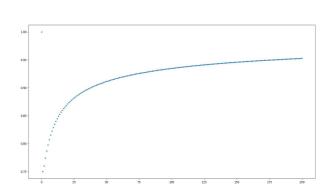
```
def u(n):
    u = 1
    for _ in range(n):
        u = u/(1+u**2)
    return u
```

b. On initialise une liste avec la valeur de $S_0 = u_0 = 1$ puis on utilise une boucle for :

```
def liste_S(n):
    L = [1]
    for k in range(1,n+1):
        L.append(L[-1]+u(k))
    return L
```

On construit la liste $[u_0S_0, \dots, u_nS_n]$ et on import le module matplotlib.pyplot :

```
import matplotlib.pyplot as plt
n = 200
Ln = list(range(n+1))
LuS = [u(k)*S(k) for k in Ln]
plt.plot(Ln,LuS,'.')
plt.show()
```



c. On utilise une boucle while:

d. D'après ce qui précède, on conjecture que :

$$\lim_{n\to+\infty} u_n = 0, \ (u_n S_n)_{n\in\mathbb{N}} \text{ est croissante, } \lim_{n\to+\infty} u_n S_n = 1 \text{ et } \lim_{n\to+\infty} S_n = +\infty$$

2. **a**. On montre par récurrence que : $\forall n \in \mathbb{N}, u_n \ge 0$.

Initialisation pour n = 0: $u_0 = 1$ donc $u_0 \ge 0$. La propriété est vérifiée au rang 0.

Hérédité : supposons que $u_n \ge 0$ et montrons que $u_{n+1} \ge 0$.

Or $u_{n+1} = \frac{u_n}{1 + u_n^2}$ donc $u_{n+1} \ge 0$ et la propriété est héréditaire.

Conclusion: $\forall n \in \mathbb{N}, u_n \geqslant 0$

Comme $\forall n \in \mathbb{N}, S_{n+1} - S_n = u_{n+1} \ge 0$, la suite $(S_n)_{n \in \mathbb{N}}$ est croissante

b. Pour tout entier naturel n, $u_{n+1} - u_n = \frac{u_n}{1 + u_n^2} - u_n = \frac{-u_n^3}{1 + u_n^2} \le 0$ d'après **1**.

On en déduit que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante, étant minorée (par 0 d'après 1.),

la suite $(u_n)_{n\in\mathbb{N}}$ est convergente

Soit $\ell = \lim_{n \to +\infty} u_n$. Comme $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{1 + u_n^2}$, en passant à la limite, on obtient $\ell = \frac{\ell}{1 + \ell^2}$.

Comme $\ell = \frac{\ell}{1+\ell^2} \Leftrightarrow \ell = 0$ ou $1 = \frac{1}{1+\ell^2} \Leftrightarrow \ell = 0$, on conclut que $\lim_{n \to +\infty} u_n = 0$

3. **a**. Montrons par récurrence que :
$$\forall n \in \mathbb{N}^*, \ \frac{1}{u_n} = 1 + S_{n-1}$$
.

Initialisation pour
$$n = 1$$
: $\frac{1}{u_1} = \frac{1 + u_0^2}{u_0} = \frac{1}{u_0} + u_0 = 2$ or $1 + S_0 = 1 + u_0 = 2$.

On a bien $\frac{1}{u_1} = 1 + S_0$ et la propriété est initialisée.

Hérédité : supposons que $\frac{1}{u_n} = 1 + S_{n-1}$ et montrons que $\frac{1}{u_{n+1}} = 1 + S_n$.

Or
$$\frac{1}{u_{n+1}} = \frac{1+u_n^2}{u_n} = \frac{1}{u_n} + u_n = 1 + S_{n-1} + u_n$$
.

Or $S_{n-1} + u_n = S_n$ donc on a bien $\frac{1}{u_{n+1}} = 1 + S_n$ et la propriété est héréditaire.

Conclusion: $\forall n \in \mathbb{N}^*, \ \frac{1}{u_n} = 1 + S_{n-1}$

b. D'après 3a., $\forall n \in \mathbb{N}, S_n = \frac{1}{u_{n+1}} - 1$ et d'après 1. et 2., $\lim_{n \to +\infty} u_{n+1} = 0^+$.

On en déduit que $\lim_{n\to+\infty} S_n = +\infty$ donc la suite $(S_n)_{n\in\mathbb{N}}$ est divergente.

Par ailleurs, $\forall n \in \mathbb{N}, \ \frac{1}{u_{n+1}} = 1 + S_n \Rightarrow \forall n \in \mathbb{N}^*, \ 1 = u_{n+1} + u_{n+1}S_n$.

Comme $\lim_{n \to +\infty} u_{n+1} = 0$, $\lim_{n \to +\infty} u_{n+1} S_n = 1$. Enfin, comme $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{1 + u_n^2}$, $\frac{u_{n+1}}{u_n} = \frac{1}{1 + u_n^2}$.

De $\lim_{n\to+\infty} u_n = 0$, on déduit que $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} = 1$ et donc $\lim_{n\to+\infty} u_{n+1} S_n = \lim_{n\to+\infty} u_n S_n$.

On a bien $\lim_{n\to+\infty} u_n S_n = 1$

4. **a**. Soit $n \in \mathbb{N}$.

$$S_{n+1}^2 - S_n^2 = (S_{n+1} - S_n)(S_{n+1} + S_n) = u_{n+1}(u_{n+1} + 2S_n) \text{ car } S_{n+1} = S_n + u_{n+1}$$

$$= u_{n+1}^2 + 2u_{n+1}S_n = u_{n+1}^2 + 2(1 - u_{n+1}) \text{ d'après un calcul dans } \mathbf{3b}.$$

On a bien : $\forall n \in \mathbb{N}, \ S_{n+1}^2 - S_n^2 = 2 + u_{n+1}(u_{n+1} - 2)$

b. À l'aide de l'égalité précédente, on obtient :
$$\sum_{k=0}^{n-1} (S_{k+1}^2 - S_k^2) = \sum_{k=0}^{n-1} (2 + u_{n+1}(u_{n+1} - 2))$$

et, par télescopage, $S_n^2 - S_0^2 = 2n + \sum_{k=0}^{n-1} u_{k+1} (u_{k+1} - 2)$.

Comme $S_0 = 1$, on a bien : $\forall n \in \mathbb{N}, S_n^2 = 2n + 1 + \sum_{k=0}^{n-1} u_{k+1}(u_{k+1} - 2)$

c. Soit
$$n \in \mathbb{N}$$
 et $a_n = \sum_{k=0}^{n-1} u_{k+1}(u_{k+1} - 2)$.

Par l'inégalité triangulaire, on a $|a_n| \leq \sum_{k=0}^{n-1} |u_{k+1}(u_{k+1}-2)|$.

Or la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0 donc $\forall k\in\mathbb{N},\ 0\leqslant u_{k+1}\leqslant u_0$.

Comme $u_0 = 1$, $0 \le u_{k+1} \le 1$ et donc $|u_{k+1}(u_{k+1} - 2)| = u_{k+1}(2 - u_{k+1}) \le 2u_{k+1}$.

Ainsi, $|a_n| \le \sum_{k=0}^{n-1} 2u_{k+1}$. Par changement d'indice, $\sum_{k=0}^{n-1} 2u_{k+1} = 2\sum_{k=1}^{n} u_k$.

Comme $u_0 \ge 0$, $\sum_{k=1}^n u_k \le \sum_{k=0}^n u_k$ et donc $\forall n \in \mathbb{N}, |a_n| \le 2S_n$.

On en déduit que $\forall n \in \mathbb{N}, |a_n u_n^2| \leq 2u_n^2 S_n$.

D'après **3b.**, $\lim_{n\to+\infty} u_n S_n = 1$ donc $\lim_{n\to+\infty} u_n^2 S_n = \lim_{n\to+\infty} u_n = 0$.

Ainsi, par encadrement $\lim_{n\to+\infty} a_n u_n^2 = 0$

d. D'après **4b**., $\forall n \in \mathbb{N}$, $S_n^2 = 2n + 1 + a_n$ donc $\forall n \in \mathbb{N}$, $u_n^2 S_n^2 = (2n + 1)u_n^2 + a_n u_n^2$

De $\lim_{n \to +\infty} u_n S_n = 1$, on déduit que $\lim_{n \to +\infty} ((2n+1)u_n^2 + a_n u_n^2) = 1$

et comme $\lim_{n \to +\infty} a_n u_n^2 = 0$, on a $\lim_{n \to +\infty} (2n+1)u_n^2 = 1$.

Enfin, comme $2n + 1 \sim 2n$, $\lim_{n \to +\infty} 2nu_n^2 = 1$ et donc $u_n^2 \sim \frac{1}{2n}$.

Finalement, comme $u_n \ge 0$, $u_n \sim \frac{1}{\sqrt{2n}}$ et, puisque $\lim_{n \to +\infty} u_n S_n = 1$, $S_n \sim \frac{1}{u_n}$ et donc $S_n \sim \sqrt{2n}$