DM 8

Soit n un entier naturel supérieur ou égal à 2. On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \begin{cases} \frac{1}{x \ln^2(x)} & \text{si } x \ge e \\ 0 & \text{sinon.} \end{cases}$$

- 1. (a) Montrer que f est une densité de probabilité.
 - (b) Soit X une variable aléatoire de densité f. Déterminer la fonction de répartition de X.
 - (c) Montrer que X n'admet pas d'espérance ni de variance. On rappelle que $\ln(x) \leqslant x$ pour tout réel x strictement positif.
- 2. (a) Montrer que la fonction suivante permet de simuler la variable aléatoire X:

```
import random as rd

def X():
    return exp(1/(1-rd.random()))
```

- (b) Écrire une fonction liste(n) qui prend en argument un entier naturel non nul n et qui renvoie sous forme d'une liste les simulations de n variables aléatoires X_1, \ldots, X_n mutuellement indépendantes de même loi que X.
- 3. Pour tout réel x > e, on note U_x la variable qui compte le nombre de fois que, pour $i \in [1, n]$, l'événement $(X_i < x)$ est réalisé.

Montrer que U_x suit une loi binomiale et en donner les paramètres.

- 4. Soit Y_n la variable aléatoire égale au second minimum des X_i , pour $i \in [1, n]$, lorsque les X_i sont classées dans l'ordre croissant (au sens large).
 - (a) Écrire une fonction Y(n) qui prend en argument un entier naturel non nul n et qui simule la variable aléatoire Y_n .
 - (b) Déterminer la fonction de répartition G_n de la variable aléatoire Y_n . On pourra exprimer $[Y_n \leq x]$ à l'aide de $[U_x \geqslant 2]$.
 - (c) Montrer que Y_n est une variable aléatoire à densité et que la fonction g_n définie par

$$g_n(x) = \begin{cases} \frac{n(n-1)}{x \ln^n(x)} \left(1 - \frac{1}{\ln(x)} \right) & \text{si } x \geqslant e \\ 0 & \text{sinon.} \end{cases}$$

est une densité de probabilité de Y_n .

(d) On note $Z_n = \ln(Y_n)$. Montrer que pour $n \ge 3$, Z_n admet une espérance et la calculer.