DM 9 : applications linéaires

Pour tout $P \in \mathbb{R}[X]$, on pose :

$$f(P) = 2XP - (X^2 - 1)P'.$$

- 1. (a) Montrer que f est un endomorphisme de $\mathbb{R}[X]$.
 - (b) Soit $P \in \mathbb{R}[X]$ un polynôme non nul. Montrer que $P \in \text{Ker}(f)$ si, et seulement si, $\deg(P) = 2$.
 - (c) Montrer alors que 0 est valeur propre de f et déterminer le sous-espace propre associé.
- 2. Sous Python, pour tout entier naturel non nul n, un polynôme de $\mathbb{R}_n[X]$ est représenté par la liste de longueur n+1 de ses coordonnées dans la base canonique. On représentera le polynôme nul par la liste vide ou une liste contenant des 0.
 - (a) Écrire une fonction derive(P) qui prend en argument un polynôme non nul et qui renvoie son polynôme dérivé.
 - (b) Écrire une fonction XkP(k,P) qui prend en argument un entier naturel non nul k et un polynôme P, et qui renvoie le polynôme X^kP .
 - (c) Écrire une fonction f(P) qui prend en argument un polynôme P et qui renvoie le polynôme f(P).

 On pourra étudier à part le cas du polynôme nul et utiliser des listes en compréhension (de même taille!).
- 3. (a) Soit P un polynôme de degré $n \in \mathbb{N}$. Que peut-on dire du degré de f(P) en fonction de n?
 - (b) En déduire la valeur de l'entier n telle que f est un endomorphisme de $\mathbb{R}_n[X]$.

Dans la suite, on pose n=2. Ainsi, f est un endomorphisme de $\mathbb{R}_2[X]$.

- 4. (a) Déterminer la matrice A de f dans la base canonique de $\mathbb{R}_2[X]$.
 - (b) Déterminer une base de Ker(f) et de Im(f).
- 5. (a) Déterminer les valeurs propres de f.
 - (b) Justifier que f est diagonalisable et déterminer une base \mathscr{B} de $\mathbb{R}_2[X]$ constituée de vecteurs propres de f.
 - (c) Soit $P = 1 + X + X^2$. Déterminer les coordonnées de P dans la base \mathscr{B} .
 - (d) Soit $k \in \mathbb{N}$. Déterminer $f^k(P)$.