BCPST Rennes Chateaubriand

Les Sols: TP n°1: organisation fonctionnelle des sols

Rappel du programme :

- Décrire le profil d'un sol brun et ses horizons, en les reliant aux processus qui les mettent en place, par exemple à l'aide de documents photographiques ou de profils réalisés sur le terrain.
- Quantifier la part relative des composantes minérale et organique du sol.
- Comparer deux types d'humus (mull et moder) : structure de l'horizon organique, biodiversité, brassage, pH, et discuter du lien avec la production végétale et avec le turn-over de la matière organique du sol.
- Déterminer la granulométrie d'un sol et le replacer dans un triangle de textures.
- Discuter des rôles des argiles, limons et sable : rétention de cations, rétention de l'eau, aération du sol.
- Identifier le complexe argilo-humique et son rôle d'adsorbant ionique.
- Mesurer la porosité et le pH d'un sol.
- Mettre en évidence la capacité d'échange cationique (CEC) avec un chromophore chargé (par exemple le bleu de méthylène et l'éosine).

1.- Profil et horizon d'un sol

Le profil de sol, appelé aussi profil pédologique, est la séquence caractéristique des horizons d'un sol donné, chaque horizon étant une couche repérable et distincte de ce sol (couleur pédologique, caractéristiques physiques, chimiques et biologiques spécifiques) et le résultat de processus pédogénétiques.

Manip. 1 - Travail sur photographies à légender : repérer et décrire les différents horizons, voir document 1

- Estimer la profondeur de chaque horizon
- Décrire sa couleur, son aspect
- Rechercher la présence de racines

2.- Les composants du sol : texture et structure du sol (documents 2 et 3)

La texture du sol se définit par les proportions relatives en argile, limon, sable fin, sable grossier. Elle s'évalue au toucher mais se mesure par analyse par tamisage d'un sol après passage à l'étuve. Connaitre la texture n'est pas suffisant pour prévoir les propriétés physiques du sol (perméabilité, aération...) mais indique une tendance :

- si les sables dominent, le sol sera filtrant,
- s'il n'y a trop d'éléments fins, le sol sera imperméable et battant,
- s'il y a suffisamment d'argile et d'humus pour accompagner sable et limon, le sol sera construit.

La texture du sol influence sa porosité.

La structure du sol est le mode d'assemblage des particules qui le composent. Elle conditionne une propriété, la porosité, qui est un facteur important de la perméabilité. Donc pour apprécier la structure et la porosité, il faut réaliser une coupe dans le sol pour examiner les différentes couches du sol.

On distingue les structures **particulaires** lorsqu'il n'y a pas de liaison entre les éléments, la structure **compacte** où les éléments sont noyés dans une masse d'argile dispersée, et la structure **grumeleuse**, où les éléments sableux sont réunis en agrégats par un complexe argilo-humique abondant et floculé (**voir document 3**)

a. Première approche : description à l'œil nu et sous la loupe

Manip. 2- Décrire à l'œil nu puis sous les doigts : couleur, consistance, tenue. - Observer à la loupe.

b. Deux tests simples pour mettre en évidence des constituants du sol

- Test à HCl : dans un verre de montre, ajouter une goutte d'HCl (! Acide : manipulation avec soin) Interprétation : l'effervescence met en évidence la présence de CaCO₃ (absence d'effervescence : peu de CaCO₃).
- Test à l'eau oxygénée : dans un autre verre de montre, ajouter une goutte d'eau oxygénée (! Oxydant : manipulation avec précaution). L'eau oxygénée oxyde la matière organique du sol, plus l'effervescence est forte, plus il y aura de matière organique

c. Mise en évidence des constituants et détermination de la texture par décantation

Manip. 3 - Réalisation du test de décantation :

Remplir une éprouvette en verre, de terre (une cuillère à soupe), remplir d'eau en laissant un peu d'air (1 à 2 cm). Bien agiter. Laisser reposer. Refaire l'agitation et observer au bout de 30 minutes.

Identifier les différents constituants, mesurer la hauteur de chaque fraction et calculer les % des trois fractions (par comparaison avec la hauteur totale), puis utiliser le triangle du **document 2** pour caractériser la texture de votre sol.

Rappel de la classification en taille des particules du sol : sables > 50 μ m ; Limon : 2 à 50 μ m ; argiles < 2 μ m

d. Tamisage et pesée des fractions

<u>En démonstration</u>: colonne de tamis. Le tamisage s'effectue sur un sol sec (séchage 24 h à l'étuve à 80 °C). Après tamisage, récupération des fractions en finissant à la pince et au pinceau puis pesée de chaque fraction.

e. Notion de floculation

<u>Manip 4 - Expérience</u>: sur les 3 tubes à essai on remplit d'eau et on ajoute une spatule d'argile et on agite puis on ajoute un dispersant (quelques gouttes de NaOH) et on agite à nouveau. Ensuite:

Tube n°1: rien d'autre

Tube n°2: ajout de quelques gouttes d'HCl

Tube n°3 : ajout d'une spatule de nitrate de calcium

On laisse reposer et on observe au bout de 5 minutes puis au bout d'une heure. Interpréter les résultats

f. Matières organiques du sol

Il existe plusieurs définitions de l'humus :

- soit toute la matière organique du sol,
- soit le résultat de la transformation de la matière organique vivante en nouvelles molécules (humine + acides humiques + acides fulviques), ce que l'on appelle parfois « l'humus stable »,
- soit l'horizon purement organique (horizon O).

Caractérisation des composés chimiques de la matière organique du sol : voir document 5 et démonstration

Manip 5 - Comparaison d'un humus type Mull et d'un humus type Moder : document 7

- Identifier à l'aide d'observations à la loupe, les principales différences entre MULL et MODER

g. Bilan: approches cartographiques sur deux sites

Manip 6 - Travail sur la cartographie des sols de Bretagne :

http://geowww.agrocampus-ouest.fr/solsdebretagne/#

Ce portail donne plusieurs choix possibles :

Matériau parental dominant, classe de texture, type de sol dominant, drainage naturel dominant, entités paysagères. Faire un bilan / Bretagne pour :

- Type de sol dominant : quel sont les deux types les plus fréquents ?
- Matériau parental dominant : quel sont les plus fréquents ?
- Drainage naturel : types les plus fréquents ?

Pour la France:

https://www.geoportail.gouv.fr/donnees/carte-des-sols

Zoomer sur la région à étudier. Afficher la légende. En utilisant l'onglet « plus de données, vous pouvez afficher aussi la géologie. En cliquant sur le premier onglet, vous pouvez manipuler le curseur de transparence pour superposer les deux cartes.

Il est intéressant par exemple de comparer la région Bretagne à la région d'Angers

3.- L'eau dans le sol, porosité, rétention d'eau

a. Humidité totale du sol

On mesure la masse P de terre humide puis on la place à l'étuve à 105 °C, ce qui fait partir toute l'eau, et on mesure sa masse sèche P'

Humidité = [(P-P')/P] * 100

b. Porosité totale du sol (document 4)

<u>Manip. 7 -</u> Prélever sans tasser un volume connu de terre, passage 24 h à 105° pour faire partir totalement l'eau, puis mesurer sa masse : cela permet de calculer sa densité apparente D'.

La densité réelle D, sol très tassé sans porosité, est à peu près constante et égale à 2,6.

La porosité totale se calcule par la formule : Porosité totale = [(D-D') / D]*100), et elle s'exprime en %

c. Rétention d'eau : distinction macroporosité microporosité. Expérience avec une éponge

La porosité se divise en deux catégories selon la taille des pores et leur relation vis-à-vis de l'eau :

- Macroporosité dont les pores sont > à 10-50μm ; occupée temporairement par l'eau dite de gravité, rapidement évacuée après une pluie par effet de pesanteur.
- Microporosité (ou porosité capillaire), pores < à 10- $50\mu m$ où l'eau peut être retenue par capillarité et être utilisable par les plantes. (Cependant les pores < à $0.2\mu m$ exercent des forces de rétention de l'eau souvent supérieures aux forces de succion des plantes).

<u>Manip. 8 – Modèle éponge</u>: Avec une éponge sèche, l'humidifier au maximum sous le robinet jusqu'à ce que l'eau s'en écoule (capacité de saturation). Arrêter et la laisser s'égoutter jusqu'à ce que plus d'eau ne s'en échappe (point de ressuyage). Presser l'éponge dans une éprouvette graduée et mesurer le volume extrait : interpréter ce volume. En démonstration un autre montage pour évaluer les porosités du sol. Schématiser ce modèle.

4.- pH du sol : acidité effective

a. pH eau

Manip. 9 - Faire une solution 1 volume de sol pour 5 volumes d'eau, bien mélanger, puis filtrer.

Mesurer le pH de la solution obtenue (avec papier pH ou sonde à pH suivant disponibilité)

b. pH KCl : acidité d'échange

<u>Manip. 10 -</u> Même protocole que ci-dessus en remplaçant les 5 volumes d'eau par 5 volumes de KCl (1 mol.L⁻¹) On mesure ainsi un pH KCl = acidité d'échanges. Trouver une explication à la différence pH eau / pH KCl.

5- Capacité d'échanges cationiques

La capacité d'échange cationique (CEC) d'un sol est la quantité de cations que celui-ci peut retenir sur son complexe adsorbant à un pH donné. La CEC est utilisée comme mesure de la fertilité d'un sol en indiquant la capacité de rétention des éléments nutritifs d'un sol donné.

La CEC correspond donc au nombre de sites négatifs proposés à l'adsorption par l'argile et la matière organique du sol (en) (MOS). Chaque sol a une CEC bien précise qui correspond à la quantité de cations qu'il peut fixer, à un pH donné. Ces cations peuvent être des acides faibles ou des acides forts (H_3O^+ notamment). Il est préférable que ce soient des acides faibles qui occupent les sites de fixation : Ca^{2+} , Mg^{2+} , K^+ , NH_4^+ car ceux-ci sont les plus intéressants d'un point de vue nutritif pour la plante... Plus le sol est riche en argile et matière organique, plus sa CEC est importante. La CEC est fortement liée au rapport C/N et au pH du sol.

Manip. 11 – Mise en évidence de la CEC :

Prendre 4 entonnoirs + coton (environ 3 cm) + tube en verre.

Ajouter un volume connu du sol dans 2 entonnoirs avec filtre ou de terreau (modélisant un humus type mull) dans les deux autres entonnoirs. Pour chaque type (sol ou terreau), verser tout doucement au centre de l'un des entonnoirs la solution d'éosine et dans l'autre celle de bleu de méthylène.

- L'éosine est un colorant rouge orangé anionique (chargé négativement).
- Le bleu de méthylène est un colorant bleu dérivé de la phénothiazine, cationique (chargé positivement).

TP Sol n°1 Organisation fonctionnelle

Analyse qualitative : interpréter la différence de résultats entre l'éosine et le bleu de méthylène **Analyse quantitative :** mesurer le volume de bleu méthylène ajouté pour retrouver la couleur bleue dans le filtrat. Comparer ce volume pour le sol et pour le terreau. **Interpréter**.

Voir **document 6** en complément.

A partir du volume versé de bleu de méthylène, on peut calculer le nombre de moles retenues par l'échantillon. On calcule alors la CEC, sachant que chaque molécule de BM porte une seule charge cationique (la solution est à 0,125 10^{-3} mol.L⁻¹). On suppose que le BM a remplacé tous les cations (y compris les ions H⁺).

Document 1: analyse d'une photographie d'une coupe d'un brunisol (« sol brun »)

Documents photographiques d'un brunisol sous forêt (F 56_049) et sous culture (F 56_050) et d'un sol brun lessivé (luvisol) :

Photos D. Walter, L'Institut Agro, Agrocampus Ouest-Rennes.

Document 2 : Tableau des textures : deux triangles de texture

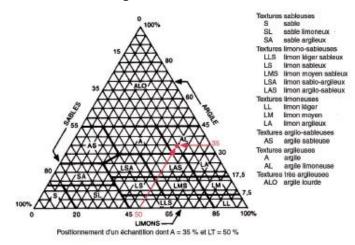


Figure 7.1. Service de la carte des sols de l'Aisne. Diagramme de classification détaillée des textures (Jamagne, 1967, modifié depuis). À l'origine, LS et LMS n'étaient pas distingués.

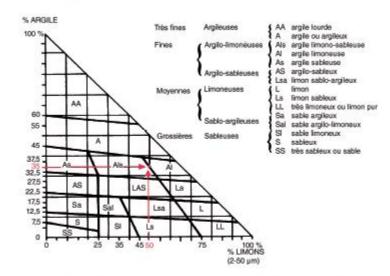
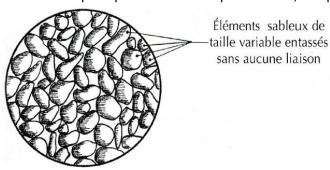


Figure 7.2. Diagramme des textures du Geppa (1963). Les 17 appellations de texture peuvent être regroupées en 6 ou 4 classes. À noter qu'il circule plusieurs versions légèrement différentes.

Dans D. Baize : guide des analyses pédologiques. Quae Tableau des tailles :

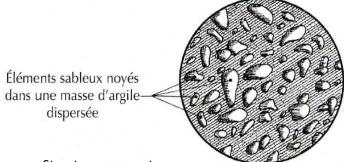
CLASSE GRANULOMETRIQUE	DIMENSIONS (en µm)
Argile	< 2
Limon fin	2-20
Limon grossier	20-50
Sable fin	50-200
Sable grossier	200-2000

Argile, limon et sable constituent la terre fine, par opposition aux éléments grossiers qui comportent les fractions suivantes :


DENOMINATION	DIMENSIONS (en cm)
Graviers	0,2 à 2 cm
Cailloux	2 à 7,5 cm
Pierres	7,5 à 20 cm
Blocs	plus de 20 cm

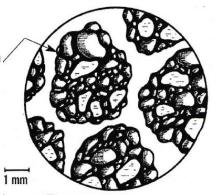
Source: http://jymassenet-foret.fr/cours/pedologie/PEDO4-2012.pdf

Document 3: structure.


Rappel: ne pas confondre structure et texture

Il existe trois principales structures: particulaires, compactes et grumeleuses (voir figure ci-dessous)

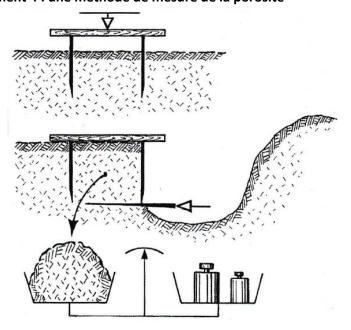
Structure particulaire:


- ne retient pas l'eau si les sables sont grossiers (sol filtrant)
- se tasse et forme une croûte si les sables sont fins (sol battant)

Structure compacte

Sont imperméables à l'eau et à l'air (sol asphyxiant) difficile à travailler, résistance à la pénétration des racines

Petite motte = grumeau. Ensemble limons ou sables liés par le complexe argilo-humique


Bonne aération, laisse s'écouler l'excès d'eau mais en retient

Structure grumeleuse

La structure idéale est la structure grumeleuse, dans laquelle 50 % du volume est occupée par des pores. Elle permet une très bonne aération du sol, et un drainage efficace.

D'après Soltner Les bases de la production végétale, tome 1 : le sol.

Document 4 : une méthode de mesure de la porosité

1 : sans tasser le sol, on enfonce un cylindre de volume connu V

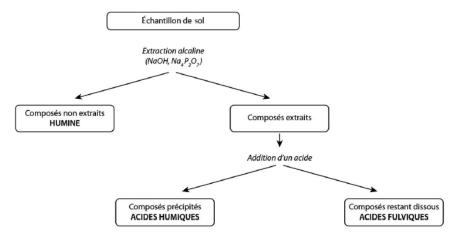
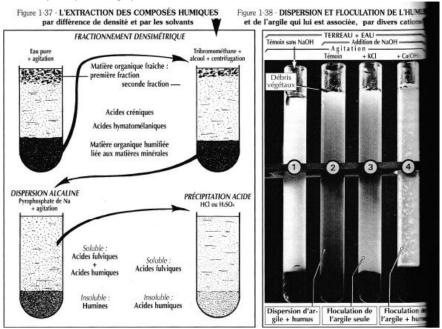
2 : on ferme la base du cylindre en y glissant une lame métallique

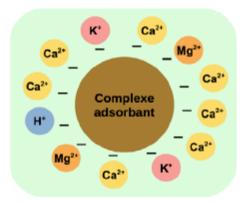
3 : on mesure la masse après séchage Densité apparenté D'= Masse / Volume

Porosité = [(2,6-D')/2,6] * 100

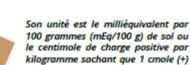
D'après Soltner Les bases de la production végétale, tome 1 : le sol.

Document 5 : caractérisation des composées humiques


Figure 4.3. Procédure d'extraction des acides fulviques et humiques (d'après Calvet et al., 2015).

Dans D. Baize: guide des analyses pédologiques. Quae



D'après Soltner Les bases de la production végétale, tome 1 : le sol.

Document 6 : Capacité d'Echanges Cationiques

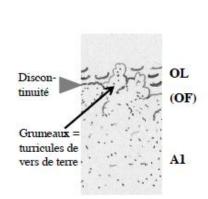
Les cations se fixent de manière réversible sur le complexe adsorbant, en équilibre avec la solution du sol.

/kg = 1 meq/100g.

Valeurs repères de la CEC dans les sols Faible réservoir Réservoir moyen Réservoir correct Important réservoir <9 meq/100g 12 meq/100g 20 meq/100g 40 meq/100g

Cependant, il faut être vigilant dans les interprétations des analyses de sol. La CEC effective d'un sol varie en fonction du pH. Or la méthode Metson de détermination de la CEC (méthode la plus courante) effectue la mesure à pH 7 quel que soit le sol de départ. Ainsi pour des sols acides ou au contraire très basiques, la CEC peut être fortement sur ou sous-estimée.

Source: https://aura.chambres-agriculture.fr/publications/toutes-les-publications/la-publication-en-detail/actualites/fertisols-la-capacite-dechange-cationique/



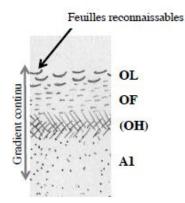

Document 7: comparaison Mull / Moder

Figure 1 - Forme d'humus et acivité biologique Figure 1 - Humus forms and biological activity

OL: litière, couche de feuilles ou d'aiguilles mortes, encore reconnaissables. Cette couche de feuilles peut être divisée en deux parties suivant la vitesse de décomposition : OLn : feuilles de l'année encore entières ; OLv : feuilles vieillies, blanchies par un début de décomposition et commençant à être fragmentées.

OF: Couche de fragmentation dans laquelle les débris ne sont plus reconnaissables.

OH: Couche humifiée, absence de toute structure végétale reconnaissable à l'œil.

	MULL	MODER
Structure résumée	OL (OF) / A1	OL, OF (OH), A1
рН	5,5 à 7,5	3,5 à 5
Rapport C/N	10 à 20	15 à 25
Tanins et terpènes	peu	Beaucoup
Complexe argilo-humique	abondant	Moins
Type de MO	Acides humiques	Acides humiques et fulviques
CEC (mEq/100 mg)	400 à 600	80 à 100
Minéralisation	rapide	Lente
Activité de minéralisation	Surtout les bactéries	Surtout les champignons
Nitrification	Forte	Faible
Faune	Lombrics, taupes	Enchytraeides (annélides très petits)
Brassage	Rapides (turricules)	Faible

Document d'après M.A. Selosse