TD: RÉVISIONS

1 On introduit les nombres complexes suivants :

$$z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}, \quad z_2 = 1 + i \quad \text{et} \quad z_3 = \frac{z_2}{z_1}.$$

- 1. Écrire ces complexes sous forme trigonométrique.
- 2. (a) En déduire $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
 - (b) En déduire également $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$.
- 2 Soit $u = \sqrt{2 \sqrt{2}} i\sqrt{2 + \sqrt{2}}$.
 - 1. Calculer u^2 , u^4 .
 - 2. Soit θ un argument de u. Donner le signe de $\cos\theta$ et de $\sin\theta$.
 - 3. En déduire une représentation exponentielle de u.
 - 4. Donner la valeur exacte de $\cos\left(\frac{3\pi}{8}\right)$.
- $\boxed{3}$ Soit $n \in \mathbb{N}$.
 - 1. Écrire $(1+i)^n$ sous forme exponentielle. En déduire une écriture sous forme exponentielle de $(1-i)^n$.
 - 2. Vérifier alors que :

$$\frac{(1+i)^n - (1-i)^n}{i} = 2^{\frac{n+2}{2}} \sin\left(\frac{n\pi}{4}\right).$$

 $\fbox{4}$ On considère le nombre complexe z suivant :

$$z = \sqrt{2} \, \frac{(\sqrt{2} - 1) + i(\sqrt{2} + 1)}{i + \sqrt{2}}.$$

- 1. Donner une représentation exponentielle de z.
- 2. Trouver les entiers $n \in \mathbb{N}$ tels que z^n est un réel.
- 3. Trouver les entiers $n \in \mathbf{N}$ tels que z^n est un imaginaire pur.
- $\overline{\mathbf{5}}$ Résoudre dans \mathbf{R} l'équation :

$$\sqrt{3}\cos x + \sin x - \sqrt{2} = 0.$$

- $\boxed{\mathbf{6}}$ Soit n un entier naturel et θ un réel.
 - 1. Factoriser $1 + e^{i\theta}$ par $e^{i\frac{\theta}{2}}$.
 - 2. On pose $C = \sum_{k=0}^{n} {n \choose k} \cos(k\theta)$ et $S = \sum_{k=0}^{n} {n \choose k} \sin(k\theta)$.

Calculer C + iS et en déduire les valeurs de C et S.

- $\boxed{7}$ Les fonctions suivantes (éventuellement prolongées par continuité) sont-elles dérivables sur ${\bf R}$?
 - $1. \ f(x) = x|x|$
 - $2. \ g(x) = x^2 \sin\left(\frac{1}{x}\right).$

Soit $n \in \mathbb{N}$. On considère la fonction f_n définie par :

$$f_n(x) = \sin^n\left(\frac{\pi}{2}x\right) \frac{\ln x}{\sqrt{x} - 1}.$$

On note \mathcal{C}_n la courbe de f_n dans un repère orthonormé.

- 1. Déterminer l'ensemble de définition \mathcal{D}_n de f_n .
- 2. Justifier que f_n est continue sur \mathcal{D}_n .
- 3. Peut-on prolonger f_n par continuité en 1?
- 4. (a) Étudier en fonction de n la limite de f_n en 0.
 - (b) En déduire pour quelles valeurs de n la fonction f_n est prolongeable par continuité en 0.
- 5. Déterminer la limite de f_n en $+\infty$. Quelle propriété peut-on en déduire pour \mathscr{C}_n ?

9 On considère la fonction f définie par :

$$f(x) = \frac{x \ln x}{x - 1}.$$

On note \mathcal{C}_f la courbe représentative de f dans un repère orthonormé.

- 1. (a) Déterminer l'ensemble de définition \mathcal{D}_f de f.
 - (b) Montrer que la fonction f est continue en tout point de \mathcal{D}_f .
 - (c) Montrer que f est de classe \mathscr{C}^1 sur \mathscr{D}_f et calculer f'.
- 2. Etude en 0.
 - (a) Montrer que f est prolongeable par continuité en 0. On note toujours f la fonction ainsi prolongée.
 - (b) Étudier la dérivabilité de f en 0. La courbe représentative de f admet-elle une tangente au point d'abscisse en 0? Si oui, préciser son équation.
- 3. Etude en 1.
 - (a) Montrer que f est prolongeable par continuité en 1. On note toujours f la fonction ainsi prolongée.
 - (b) Déterminer un développement limité de f en 1 à l'ordre 2.
 - (c) En déduire que f est dérivable en 1 et préciser f'(1).
 - (d) Donner l'équation de la tangente T à \mathcal{C}_f au point d'abscisse 1 et discuter la position relative de \mathcal{C}_f et T au voisinage de 1.
- 4. Variations courbe représentative.
 - (a) Préciser la limite de f en $+\infty$.
 - (b) Montrer que : $\forall x \in \mathbf{R}_{+}^{*}$, $\ln x \leqslant x 1$.
 - (c) Établir un tableau de variations complet de f sur \mathbf{R}_{+} .
 - (d) Représenter \mathscr{C}_f en utilisant toutes les informations trouvées précédemment.
- 5. Fonction réciproque de f.
 - (a) Montrer que f réalise une bijection de \mathbf{R}_+ sur un ensemble à préciser.
 - (b) Montrer que f^{-1} est dérivable sur \mathbf{R}_{+}^{*} et calculer $(f^{-1})'(1)$.
 - (c) Montrer que f^{-1} est dérivable en 0. Indication : on pourra écrire le taux d'accroissement de f^{-1} en 0 à l'aide de celui de f en 0.
 - (d) Représenter la courbe représentative de f^{-1} sur le même graphique que \mathscr{C}_f .