- 1. Pour tout $x \in \mathbb{R}$, la fonction $g_x : t \mapsto \frac{\text{DM2 Corrigé}}{1 + t^2}$ est continue sur [0, 1]donc $\int_0^1 \frac{\exp(-x(1+t^2))}{1+t^2} dt$ existe. Ainsi, $\mathcal{D}_f = \mathbb{R}$.
- **2**. En posant x = 0, on obtient $f(0) = \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \left[\arctan t\right]_0^1 = \arctan 1 \arctan 0$ donc $f(0) = \frac{\pi}{4}$
- **a**. On utilise la fonction exp du module math (ou numpy):

```
import math as m
def g(x,t):
    return m.exp(-x*(1+t**2))/(1+t**2)
```

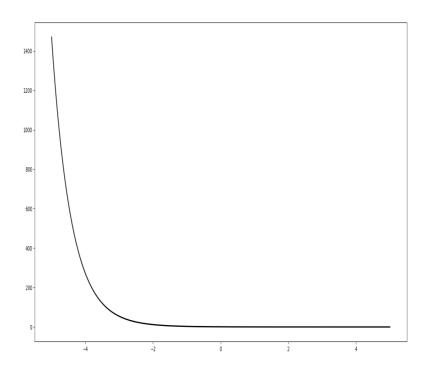
b. On sait que, en posant $R_n = \frac{1}{n} \sum_{k=0}^{n-1} g\left(x, \frac{k}{n}\right)$, comme la fonction $t \mapsto g(x, t)$ est continue sur [0,1], $\lim_{n\to+\infty} R_n = \int_0^1 g(x,t) dt = f(x)$. Ainsi, R_n est une valeur approchée de f(x):

```
def val_appro_f(x,n):
    return sum([g(x,k/n) for k in range(n)])/n
```

c. On crée une liste Lx, subdivision de [-5,5], et une liste Ly des valeurs de f(x) correspondantes. Puis on utilise les fonctions plot et show du module matplotlib.pyplot:

```
import matplotlib.pyplot as plt
a,b = -5, 5
n = 1000
Lx = [a+k*(b-a)/n \text{ for } k \text{ in } range(n+1)]
Ly = [val approx f(x,n) for x in Lx]
plt.plot(Lx,Ly)
plt.show()
```

On obtient la courbe :



d. D'après **2**., $f(0) = \frac{\pi}{4}$ donc 4f(0) est une valeur approchée de π . Ainsi, l'instruction

fournit une valeur approchée de π égale à 3,141593653589793

a. Pour tout $t \in [0,1]$ et tout $x \in \mathbb{R}^+, x \leqslant x(1+t^2) \leqslant 2x$ donc $-2x \leqslant x(1+t^2) \leqslant -x$

et, par coissance de la fonction exponentielle, $\frac{e^{-2x}}{1+t^2} \leqslant \frac{\exp(-x(1+t^2))}{1+t^2} \leqslant \frac{e^{-x}}{1+t^2}$.

Enfin, par croissance de l'intégrale sur [0,1], on obtient : $\int_0^1 \frac{e^{-2x}}{1+t^2} dt \le f(x) \le \int_0^1 \frac{e^{-x}}{1+t^2} dt.$

Comme $\int_0^1 \frac{1}{1+t^2} dt = \frac{\pi}{4}$, on a bien : $\forall x \in \mathbb{R}^+, e^{-2x} \frac{\pi}{4} \leq f(x) \leq e^{-x} \frac{\pi}{4}$. **b.** Comme $\lim_{x \to +\infty} e^{-2x} \frac{\pi}{4} = \lim_{x \to +\infty} e^{-x} \frac{\pi}{4} = 0$, par encadrement, on conclut que $\lim_{x \to +\infty} f(x) = 0$.

Ce qui est cohérent avec la conjecture de 3c.

c. On procède de la même manière : pour tout $t \in [0,1]$ et tout $x \in \mathbb{R}^-, 2x \le x(1+t^2) \le x$

donc
$$\frac{e^{-x}}{1+t^2} \le \frac{e^{-x(1+t^2)}}{1+t^2} \le \frac{e^{-2x}}{1+t^2}$$
 et $\int_0^1 \frac{e^{-x}}{1+t^2} dt \le f(x) \le \int_0^1 \frac{e^{-2x}}{1+t^2} dt$.

On a alors $\forall x \in \mathbb{R}^-, e^{-x} \frac{\pi}{4} \leq f(x) \leq e^{-2x} \frac{\pi}{4}$

Comme $\lim_{x \to -\infty} e^{-x} \frac{\pi}{4} = +\infty$, on conclut que $\lim_{x \to -\infty} f(x) = +\infty$

Ce qui est cohérent avec la conjecture de 3c.

5. On admet que f est dérivable et que $\forall x \in \mathbb{R}, f'(x) = -e^{-x} \int_{-\infty}^{1} e^{-xt^2} dt$.

a. On effectue le changement de variable u = xt

On a alors du = xdt, $t = 0 \Leftrightarrow u = 0$ et $t = 1 \Leftrightarrow u = x$.

Ainsi
$$x \int_0^1 e^{-x^2 t^2} dt = \int_0^1 e^{-(xt)^2} x dt d'où \forall x \in \mathbb{R}, x \int_0^1 e^{-x^2 t^2} dt = \int_0^x e^{-u^2} du$$

b. Soit, pour tout $x \in \mathbb{R}$, $h(x) = f(x^2) + \left(\int_0^x e^{-u^2} du\right)^2$.

Comme on admet que f est dérivable sur \mathbb{R} , par composition la fonction $x \mapsto f(x^2)$ l'est également.

On pose $\varphi(u) = e^{-u^2}$, la fonction φ est définie et continue sur \mathbb{R} donc admet une primitive Φ sur \mathbb{R} qui est de classe \mathcal{C}^1 sur \mathbb{R} .

Commme $\forall x \in \mathbb{R}, \int_0^x e^{-u^2} du = \Phi(x) - \Phi(0)$, la fonction $x \mapsto \int_0^x e^{-u^2} du$ est dérivable sur \mathbb{R} .

Par composition, la fonction $x \mapsto \left(\int_0^x e^{-u^2} du\right)^2$ est dérivable sur \mathbb{R} .

Comme somme de deux fonctions dérivables sur \mathbb{R} , h est dérivable sur \mathbb{R} .

De plus,
$$\forall x \in \mathbb{R}$$
, $h'(x) = 2xf'(x^2) + 2e^{-x^2} \int_0^x e^{-u^2} du = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt + 2e^{-x^2} \int_0^x e^{-u^2} du$.

D'après **a**., $h'(x) = -2\int_0^x e^{-u^2} du + 2e^{-x^2} \int_0^x e^{-u^2} du$. Finalement, $\forall x \in \mathbb{R}, h'(x) = 0$

6. Comme $\forall x \in \mathbb{R}, h'(x) = 0$, la fonction h est constante sur \mathbb{R} .

Comme
$$\int_0^0 e^{-u^2} du = 0$$
, $h(0) = f(0) = \frac{\pi}{4}$ donc $\forall x \in \mathbb{R}, h(x) = \frac{\pi}{4}$.

On a alors: $\forall x \in \mathbb{R}$, $\left(\int_0^x e^{-u^2} du\right)^2 = \frac{\pi}{4} - f(x^2)$ et donc $\forall x \in \mathbb{R}^+$, $\int_0^x e^{-u^2} du = \sqrt{\frac{\pi}{4} - f(x^2)}$ car $\forall x \in \mathbb{R}^+, \int_0^x e^{-u^2} du \ge 0$ (intégrale d'une fonction positive sur [0,x] où $0 \le x$).

D'après **4b**.,
$$\lim_{x \to +\infty} f(x) = 0$$
 donc $\lim_{x \to +\infty} \int_0^x e^{-u^2} du$ existe et $\lim_{x \to +\infty} \int_0^x e^{-u^2} du = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2}$.