Équations différentielles

Pour lundi 11 octobre

Le but de cet exercice est de déterminer les fonctions f définies, continues et dérivables sur \mathbb{R}_+^* vérifiant l'équation :

$$(E): xf' - |1 - f| = 1.$$

1ère partie:

- **1**. Résoudre l'équation différentielle $(E_1): xy' y = 0$ sur \mathbb{R}_+^* .
- **2.** Résoudre l'équation différentielle (E_2) : xz' + z = 2 sur \mathbb{R}_+^* .
- **3**. Sous Python, représenter sur un même schéma les courbes solutions de (E_1) et (E_2) vérifiant les conditions y(2) = z(2) = 1.

2ème partie:

Soit f une solution de (E).

- **1**. Montrer que la fonction f est strictement croissante.
- **2**. Montrer que si la fonction f est minorée par 1 alors elle vérifie (E_1) . Calculer $\lim_{x\to 0} f(x)$. En déduire une contradiction.
- **3**. Montrer que si la fonction f est majorée par 1 alors elle vérifie (E_2) . Calculer $\lim_{x \to \infty} f(x)$. En déduire une contradiction.
- **4. a.** Montrer qu'il existe un unique réel a tel que f(a) = 1.
 - **b**. Déterminer l'expression de f(x) sur [0, a].
 - **c**. Déterminer l'expression de f(x) sur $[a, +\infty[$.
- **5**. Vérifier que la fonction obtenue est solution de l'équation (*E*) et donner l'ensemble des solutions de (*E*).
- **6**. Sous Python, représenter sur un même schéma les courbes solutions de (E) sur]0,10] pour $a \in \{0.5,0.7,1,1.75,5\}$.