Séries de nombres réels

I	Dé	éfinitions et propriétés générales	page 2
	1.	Définition d'une série de nombres réels	
	2.	Nature d'une série	
	3.	Premières propriétés	page 3
	4.	Reste d'une série numérique	page 4
II	Sé	ries numériques réelles à termes positifs	
	1.	Critère de convergence d'une série à termes positifs	
	2.	Comparaison de deux séries à termes positifs	page 5
	3.	Critère de convergence d'une série : la convergence absolue	page 6
Ш	Sé	éries de référence	page 7
	1.	Séries télescopiques	
	2.	Série harmonique, série harmonique alternée, série de Riemann	
	3.	Séries géométriques et séries dérivées des séries géométriques	
	4.	Série exponentielle	page 8

I Définitions et propriétés générales

1. Définition d'une série de nombres réels

Définition 1 Soit (u_n) une suite de nombres réels.

On appelle <u>série</u> de terme général u_n la suite (S_n) définie par : $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n u_k$.

Remarque • La série de terme général u_n est une nouvelle suite et tout ce qui a été vu sur les suites s'applique à la suite (S_n)

• Si la suite (u_n) n'est définie qu'à partir du rang n_0 alors la série de terme général u_n est la suite définie par : $\forall n \geqslant n_0, \ S_n = \sum_{k=n_0}^n u_k$

Exemple La série de terme général $u_n = n$ est la suite (S_n) définie par : $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n k = \frac{n(n+1)}{2}$

Notation La série de terme général u_n est notée $\sum u_n$ et $S_n = \sum_{k=0}^n u_k$ est appelée la <u>somme partielle d'ordre n</u> de la série $\sum u_n$.

2. Nature d'une série

Définition 2 Soit (u_n) une suite de nombres réels.

- On dit que la série $\sum u_n$ est <u>convergente</u> si la suite des sommes partielles (S_n) définie par : $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n u_k$, est convergente.
- Si la série $\sum u_n$ est convergente alors on appelle somme de la série $\sum u_n$ la limite de la suite (S_n) . On note alors $\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k$.
- La série $\sum u_n$ est divergente si (S_n) n'admet pas de limite ou si sa limite est infinie.

Définition 3 Étudier la <u>nature d'une série</u>, c'est dire si elle est convergente ou divergente.

Attention il est important de remarquer que la notation $\sum u_n$ désigne une suite (la suite (S_n)) et que la notation $\sum_{n=0}^{+\infty} u_n$ désigne une limite, la somme de la série.

Pour utiliser la notation $\sum_{n=0}^{+\infty} u_n$ il est impératif d'avoir déjà justifier la convergence de la série.

Exercice 1 Étudier la nature des séries suivantes :

- 1) $\sum n$
- 2) $\sum_{n=0}^{\infty} (-1)^n$
- 3) $\sum a^n$ (série géométrique de raison a) en discutant suivant les valeurs de $a \in \mathbb{R}$
- 4) $\sum \frac{1}{n(n+1)}$, n > 0

Proposition 1 L'ensemble des séries convergentes a une structure d'espace vectoriel.

Autrement dit : pour toutes séries $\sum u_n$ et $\sum v_n$, pour tous scalaires λ et μ , si les séries $\sum u_n$ et $\sum v_n$ convergent alors $\sum (\lambda u_n + \mu v_n)$ est une série convergente.

De plus, si les sommes des séries $\sum u_n$ et $\sum v_n$ sont respectivement égales à U et V alors la somme de la série $\sum (\lambda u_n + \mu v_n)$ est égale à $\lambda U + \mu V$.

Preuve évident en considérant que c'est un sous-espace vectoriel des suites à valeurs dans \mathbb{R} . C'est un résultat usuel sur les suites.

Attention La notation $\sum_{n=0}^{+\infty} u_n$ ne s'utilisant qu'àprès avoir justifier la convergence de la série, on ne peut écrire $\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} b_n$ qu'après avoir justifier la convergence d'au moins deux des trois séries : $\sum u_n$, $\sum v_n$ et $\sum (\lambda u_n + \mu v_n)$

Exemple Considérons la série $\sum \frac{1}{n(n+1)}$.

Soit
$$\forall n \in \mathbb{N}^*$$
, $S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}$.

Comme $\lim_{n\to+\infty} \frac{1}{n+1} = 0$, $\lim_{n\to+\infty} S_n = 1$ et la série $\sum \frac{1}{n(n+1)}$ est convergente.

Sa somme est alors égale à $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$.

Mais l'égalité $\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{+\infty} \frac{1}{k} - \sum_{k=1}^{+\infty} \frac{1}{k+1}$ n'a aucun sens puisque les séries $\sum \frac{1}{n}$ et $\sum \frac{1}{k+1}$ sont divergentes.

Ce serait la même erreur que de penser que $+\infty - \infty = 0$ alors que c'est une forme indéterminée.

3. Premières propriétés

Proposition 2 Soit (u_n) une suite de réels. Si la série $\sum u_n$ est convergente alors $\lim_{n\to+\infty} u_n = 0$.

Preuve On pose $\forall n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k$. Comme $\sum u_n$ est convergente, (S_n) admet une limite finie S. Or $\forall n \in \mathbb{N}^*$, $S_n - S_{n-1} = u_n$, par opération sur les limites, (S_n) et (S_{n-1}) convergent ves S donc (u_n) converge vers 0.

Remarque On utilise souvent la contraposée : si $\lim_{n\to +\infty} u_n \neq 0$ alors $\sum u_n$ est divergente.

Exemple Si $|a| \ge 1$ alors la série $\sum a^n$ est divergente en effet $\lim_{n \to +\infty} a^n \ne 0$

Remarque La réciproque de cette proposition est fausse :

Soit la série de terme général $u_n = \frac{1}{n}$.

Il est clair que $\lim_{n\to+\infty} u_n = 0$ montrons que $\sum u_n$ est divergente. On pose $\forall n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{k}$

1ère méthode : par l'absurde, supposons que $\sum u_n$ soit convergente de somme S

$$\forall n \in \mathbb{N}^*, S_{2n} - S_n = \sum_{k=n+1}^{2n} \frac{1}{k} \geqslant \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{1}{2}$$

ce qui est contradictoire avec $\lim_{n\to +\infty} (S_{2n} - S_n) = S - S = 0$.

2e méthode : on peut montrer que $\forall x > -1$, $\ln(1+x) \le x$

ainsi
$$\forall k \in \mathbb{N}^*$$
, $\ln(1 + \frac{1}{k}) \leqslant \frac{1}{k}$ et donc $\ln(k+1) - \ln k \leqslant \frac{1}{k}$.

D'où
$$\sum_{k=1}^{n} \frac{1}{k} \ge \sum_{k=1}^{n} (\ln(k+1) - \ln k)$$
 soit, par télescopage, $S_n \ge \ln(n+1)$.

Par comparaison des suites, comme $\lim_{n\to+\infty} \ln(n+1) = +\infty$, $\lim_{n\to+\infty} S_n = +\infty$

Proposition 3 On ne change pas la nature (convergence ou divergence) d'une série $\sum u_n$ si on supprime un nombre fini de termes de la suite (u_n) .

Autrement dit : Soit une suite (u_n) et $p \in \mathbb{N}$ alors les séries $\sum u_n$ et $\sum_{n \ge n} u_n$ sont de même nature.

C'est-à-dire : $\sum u_n$ converge $\Leftrightarrow \sum_{n\geqslant p} u_n$ converge (mais les sommes ne sont pas égales)

$$\sum u_n$$
 diverge $\Leftrightarrow \sum_{n\geqslant p} u_n$ diverge

Preuve En exercice en posant $\forall n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k = \sum_{k=0}^{p-1} u_k + \sum_{k=n}^n u_k = C + \sum_{k=n}^n u_k$.

Exemple • La série $\sum \frac{1}{n+p}$ est divergente et tend vers $+\infty$

• Soit
$$a \in]-1,1[$$
. la série $\sum_{n\geqslant p}a^n$ est convergente et sa somme est égale à $\sum_{n=p}^{+\infty}a^n=\frac{a^p}{1-a}$.

4. Reste d'une série numérique

Définition 4 Soit (u_n) une suite de nombres réels.

Si la série $\sum u_n$ est convergente alors on appelle <u>reste</u> d'ordre n de la série $\sum u_n$ le nombre $R_n = \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^n u_k.$

Notation Soit (u_n) une suite de nombres réels telle que la série $\sum u_n$ converge.

Soit $n \in \mathbb{N}$. Le reste d'ordre n de la série $\sum u_n$ est noté $R_n = \sum_{k=n+1}^{+\infty} u_k$.

Soit (S_n) la suite des sommes partielles et S la somme de la série $\sum u_n$.

Alors $R_n = S - S_n$.

On en déduit que $\lim_{n\to +\infty} R_n = 0$.

Exemples • Soit
$$a$$
 tel que $|a| < 1$. Le reste d'ordre n de la série $\sum a^n$ est $R_n = \sum_{k=0}^{+\infty} a^k - \sum_{k=0}^n a^k = \frac{1}{1-a} - \frac{1-a^{n+1}}{1-a} = \frac{a^{n+1}}{1-a}$ et on a bien $\lim_{n \to +\infty} R_n = 0$.

• Le reste d'ordre n (n > 0) de la série $\sum \frac{1}{n(n+1)}$ est

$$R_n = \sum_{k=1}^{+\infty} \frac{1}{k(k+1)} - \sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \left(1 - \frac{1}{n+1}\right) = \frac{1}{n+1} \text{ et on a bien } \lim_{n \to +\infty} R_n = 0.$$

Il Séries numériques réelles à termes positifs

1. Critère de convergence d'une série à termes positifs

Proposition 4 Soit (u_n) une suite de nombres réels positifs ou nuls.

La série $\sum u_n$ est convergente si, et seulement si, la suite des sommes partielles est majorée.

C'est-à-dire s'il existe un réel M tel que $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n u_k \leq M$.

Sinon, la série $\sum u_n$ tend vers $+\infty$

Preuve La suite (S_n) est croissante $(\forall n \in \mathbb{N}, S_{n+1} - S_n = u_n \ge 0)$ et majorée donc convergente.

Exercice 2 Étudier la nature de la série $\sum \frac{1}{n^2}$. On pourra utiliser la minoration : $\forall k > 1, \ k^2 \ge k(k-1)$

2. Comparaison de deux séries à termes positifs

Proposition 5 Soit (u_n) et (v_n) deux suites de nombres réels positifs ou nuls telles que $\forall n \in \mathbb{N}, 0 \le u_n \le v_n$

- Si la série $\sum v_n$ converge alors la série $\sum u_n$ converge
- Si la série $\sum u_n$ diverge alors la série $\sum v_n$ diverge.

Preuve On pose $\forall n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k$ et $T_n = \sum_{k=0}^n v_k$.

Comme $\forall k \in \mathbb{N}, \ 0 \leq u_k \leq v_k, \ \forall n \in \mathbb{N}, \ 0 \leq S_n \leq T_n$.

• Si la série $\sum_{k=0}^{\infty} v_n$ converge alors la suite (T_n) est croissante et convergente donc majorée par sa somme $T = \sum_{k=0}^{\infty} v_k$.

On en déduit que $\forall n \in \mathbb{N}$, $0 \leq S_n \leq T$ et que la suite (S_n) est croissante et majorée donc convergente.

• Si la série $\sum u_n$ diverge alors la suite (S_n) est croissante et divergente donc elle tend vers $+\infty$ donc la suite (T_n) tend vers $+\infty$ aussi.

Exercice 3 Considérons la série de terme général $u_n = \frac{1}{n^P}$.

montrer que si $p \ge 2$ alors la série $\sum \frac{1}{n^p}$ est convergente

montrer que si $p \le 1$ alors la série $\sum \frac{1}{n^p}$ est divergente

Proposition 6 Soit (u_n) et (v_n) deux suites de nombres réels positifs ou nuls telles que $u_n \sim v_n$ Alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Preuve $u_n \sim v_n \Leftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 1 \text{ donc } \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ | \ \forall n \geqslant n_0, \ \left| \frac{u_n}{v_n} - 1 \right| \leqslant \varepsilon.$

Pour $\varepsilon = \frac{1}{2}$, $\exists n_0 \in \mathbb{N} \mid \forall n \geq n_0$, $\frac{1}{2} \leq \frac{u_n}{v_n} \leq \frac{3}{2}$ et donc $\forall n \geq n_0$, $0 \leq \frac{1}{2}v_n \leq u_n \leq \frac{3}{2}v_n$.

Ainsi, si $\sum u_n$ converge alors $\sum \frac{1}{2}v_n$ converge donc $\sum v_n$ aussi

et si $\sum u_n$ diverge alors $\sum \frac{3}{2}v_n$ diverge donc $\sum v_n$ aussi.

Exercice 4 Étudier la nature des séries :

1)
$$\sum \sin \frac{1}{2^n}$$

2)
$$\sum \ln(1 + \frac{1}{n})$$

Proposition 7 Comparaison avec une intégrale.

Soit a > 0 et f une fonction définie, continue par morceaux et strictement décroissante sur $[a, +\infty[$. On considère la série $\sum f(n)$.

Soit (S_n) la suite des sommes partielles de la série $\sum f(n)$.

Alors pour tout entier k > a, $\int_{k}^{k+1} f(t) dt \le f(k) \le \int_{k-1}^{k} f(t) dt$

et donc $\forall (p,n) \in \mathbb{N}^{*2} \mid p \leqslant n, \int_{p}^{n+1} f(t) dt \leqslant \sum_{k=p}^{n} f(k) \leqslant \int_{p-1}^{n} f(t) dt.$

Preuve Comme f est décroissante sur $[a, +\infty[$,

 $k \le t \le k+1 \Rightarrow f(t) \le f(k)$ et donc $\int_{k}^{k+1} f(t) dt \le \int_{k}^{k+1} f(k) dt$ soit $\int_{k}^{k+1} f(t) dt \le f(k)$

 $k-1 \leqslant t \leqslant k \Rightarrow f(k) \leqslant f(t)$ et donc $\int_{k}^{k+1} f(k) dt \leqslant \int_{k}^{k+1} f(t) dt$ soit $f(k) \leqslant \int_{k-1}^{k} f(t) dt$

En sommant, la relation de Chasles donne $\int_{p}^{n+1} f(t) dt \le \sum_{k=p}^{n} f(k) \le \int_{p-1}^{n} f(t) dt$.

Remarque • On a un résultat analogue si f est croissante.

• utile quand il est plus facile de calculer l'intégrale que les sommes partielles

Exercice 5 Séries de Riemann (résultat hors programme mais exercice classique)

Soit $\alpha \in \mathbb{R}_+^*$, étudier la nature de la série $\sum \frac{1}{n^{\alpha}}$ selon les valeurs du paramètre α .

On posera
$$S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}} \operatorname{et} f(x) = \frac{1}{x^{\alpha}}.$$

3. Critère de convergence d'une série : la convergence absolue

Définition 5 Soit (u_n) une suite de nombres réels.

La série $\sum u_n$ est absolument convergente si, et seulement si, la série $\sum |u_n|$ est convergente.

Remarque L'étude de la convergence absolue d'une série se ramène à l'étude de la convergence d'une série à terme réels positifs.

L'intérêt de la convergence absolue réside dans la proposition suivante :

Proposition 8 Soit (u_n) une suite de nombres réels.

Si la série $\sum u_n$ est absolument convergente alors elle est convergente.

Dans ce cas,
$$\left|\sum_{k=0}^{+\infty} u_k\right| \leq \sum_{k=0}^{+\infty} |u_k|$$
.

Preuve Soit (p_n) et (m_n) les deux suites définies par : $p_n = \begin{cases} u_n & \text{si } u_n \ge 0 \\ 0 & \text{si } u_n < 0 \end{cases}$ et $m_n = \begin{cases} -u_n & \text{si } u_n < 0 \\ 0 & \text{si } u_n \ge 0 \end{cases}$.

Les deux suites (p_n) et (m_n) sont des suites réelles à termes positifs et on a :

$$\forall n \in \mathbb{N}, \ 0 \leqslant p_n \leqslant |u_n| \text{ et } 0 \leqslant m_n \leqslant |u_n|.$$

Comme la série $\sum |u_n|$ converge, par comparaison, les séries $\sum p_n$ et $\sum m_n$ convergent.

Comme $\forall n \in \mathbb{N}, u_n = p_n - m_n$, par opération sur les séries, la série $\sum u_n$ est convergente.

Remarque La récirpoque de cette prosition est fausse :

il existe des séries convergentes qui ne sont pas absolument convergentes.

Exercice 6 On considère la série harmonique alternée de terme général $u_n = \frac{(-1)^{n+1}}{n}$.

1) Montrer que cette série n'est pas absolument convergente.

2) On pose
$$S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$$
.

1ère méthode :

justifier que
$$\forall t \in [0,1], \sum_{k=1}^{n} (-t)^{k-1} = \frac{1 - (-t)^n}{1+t}.$$

En intégrant entre 0 et 1, montrer que $S_n = \ln 2 - \int_0^1 \frac{(-t)^n}{1+t} dt$.

Montrer que
$$\lim_{n\to+\infty} \int_0^1 \frac{(-t)^n}{1+t} dt = 0.$$

Conclure

2e méthode:

montrer que les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.

Conclure.

III Séries de référence

1. Séries télescopiques

Proposition 9 Soit (u_n) une suite de nombres réels ou complexes.

La série télescopique $\sum (u_{n+1} - u_n)$ est convergente si, et seulement si, la suite (u_n) est convergente.

Preuve Soit
$$S_n = \sum_{k=0}^{n} (u_{k+1} - u_k)$$
.

Par télescopage,
$$S_n = u_{n+1} - u_0$$
.

On en déduit que :
$$(S_n)_n$$
 converge $\Leftrightarrow (u_{n+1})_n$ converge.

2. Série harmonique, série harmonique alternée, série de Riemann

Le cas général des séries de Riemann $\sum \frac{1}{n^{\alpha}}$ est hors programme

Proposition 10 • la série harmonique $\sum \frac{1}{n}$ est divergente et $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{n} = +\infty$

- la série harmonique alternée $\sum \frac{(-1)^{n-1}}{n}$ est convergente.
- la série $\sum \frac{1}{n^2}$ est convergente

3. Séries géométriques et séries dérivées des séries géométriques

Proposition 11 Soit $q \in \mathbb{R}$.

La série géométrique $\sum q^n$ est absolument convergente si, et seulement si, |q| < 1

Si
$$|q| < 1$$
 alors sa somme est égale à $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$.

Preuve On pose $f_n(x) = \sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$ définie sur] - 1,1[.

Comme
$$\lim_{n\to\infty} x^{n+1} = 0$$
, $\lim_{n\to\infty} f_n(x) = \frac{1}{1-x}$.

Remarque La fonction f_n est deux fois dérivable sur]-1,1[et on a :

•
$$\forall x \in]-1, 1[, f'_n(x) = \sum_{k=1}^n kx^{k-1} = \frac{1-x^{n+1}}{(1-x)^2} - \frac{(n+1)x^n}{1-x}$$

•
$$\forall x \in]-1,1[,f_n''(x)] = \sum_{k=2}^n k(k-1)x^{k-2} = \frac{2(1-x^{n+1})}{(1-x)^3} - \frac{2(n+1)x^n}{(1-x)^2} - \frac{(n+1)nx^{n-1}}{1-x}$$

On en déduit le résultat suivant :

Proposition 12 Soit $q \in \mathbb{R}$.

Les séries géométriques dérivées première $\sum nq^{n-1}$ et seconde $\sum n(n-1)q^{n-2}$ sont absolument convergentes si, et seulement si, |q| < 1.

Si |q| < 1 alors les sommes de ces séries sont égales à $\sum_{n=1}^{+\infty} nq^{n-1} = \frac{1}{(1-q)^2}$ et

$$\sum_{n=2}^{+\infty} n(n-1)q^{n-2} = \frac{2}{(1-q)^3}.$$

Exercice 7 Étudier la convergence et calculer la somme des séries suivantes :

1)
$$\sum 2^{n-3} \times 3^{-n+1}$$

2) $\sum \frac{n}{2^{n+2}}$

$$2) \, \overline{\sum} \, \frac{n}{2^{n+2}}$$

$$3) \sum n^2 \left(\frac{-1}{3}\right)^{n-1}$$

4. Série exponentielle

Proposition 13 $\forall x \in \mathbb{R}$, la série $\sum \frac{x^n}{n!}$ est absolument convergente et sa somme vaut $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$.

Exercice 8 Pour tout réel x, étudier la convergence et calculer la somme des séries $\sum \frac{x^{2n}}{(2n)!}$ et $\sum \frac{x^{2n+1}}{(2n+1)!}$.

Indication: considérer $e^x + e^{-x}$ et $e^x - e^{-x}$