CHAPITRE FONCTIONS USUELLES (1ÈRE PARTIE)

I Quelques fonctions élémentaires

Théorème-Définition (Fonction polynomiale)

- Soient $(a_0, \ldots, a_n) \in \mathbb{R}^{n+1}$ où $n \in \mathbb{N}$. On appelle **fonction polynomiale** toute fonction d'expression $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ pour tout $x \in \mathbb{R}$.
- Toute fonction polynomiale est définie et de classe \mathcal{C}^{∞} sur \mathbb{R} .

Exemple La fonction $x \mapsto 3x^4 - 2x^2 + 5x + 2$ est une fonction polynomiale. Elle est définie, de classe \mathcal{C}^{∞} sur \mathbb{R} .

Théorème-Définition (Fonction fraction rationnelle)

- On appelle fonction fraction rationnelle ou fonction rationnelle toute fonction d'expression $f(x) = \frac{P(x)}{Q(x)}$ où P et Q sont des fonctions polynomiales.
- Toute fonction fraction rationnelle est définie, de classe C^{∞} sur $\{x \in \mathbb{R} / Q(x) \neq 0\}$.

Exemple La fonction $x \mapsto \frac{x^3 + 2x^2 + 5}{x^2 - 3x + 2}$ est une fonction fraction rationnelle. Elle est définie, de classe C^{∞} sur $]-\infty,1[\cup]1,2[\cup]2,+\infty[$.

Théorème-Définition (Valeur absolue)

- On définit la fonction valeur absolue par $\begin{vmatrix} |\cdot| : & \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \begin{cases} x & \text{si } x \geqslant 0 \\ -x & \text{si } x \leqslant 0 \end{cases}.$
- La fonction valeur absolue est continue sur \mathbb{R} et dérivable sur \mathbb{R}^* .

II Fonction logarithme népérien

Définition (Logarithme népérien)

On appelle **logarithme népérien**, noté ln, la primitive de $x \mapsto \frac{1}{x} \operatorname{sur} \mathbb{R}_+^*$, qui s'annule en 1.

Remarques (Conséquences immédiates)

• $\ln 1 = 0$ • $\ln x = 0$ • \ln

Théorème (Propriétés de ln)

1) Propriétés calculatoires $\forall (a,b) \in (\mathbb{R}_+^*)^2$, $\ln(ab) = \ln(a) + \ln(b)$, $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$.

$$\forall a \in \mathbb{R}_+^*, \quad \forall n \in \mathbb{Z}, \quad \ln(a^n) = n \ln a.$$

2) Limites usuelles $\lim_{x\to +\infty} \ln(x) = +\infty \qquad \qquad \lim_{x\to 0^+} \ln(x) = -\infty$

$$\lim_{x\to 1}\frac{\ln(x)}{x-1}=1 \qquad \qquad \text{ou} \qquad \qquad \lim_{h\to 0}\frac{\ln(1+h)}{h}=1.$$

3) Inégalités classiques $\forall x > 0$, $\ln(x) \leq x - 1$ ou $\forall x > -1$, $\ln(1 + x) \leq x$

Théorème (Dérivée de $x\mapsto \ln(|u(x)|)$)

Soit $u:I\to\mathbb{R}$ dérivable telle que pour tout $x\in I,\ u(x)\neq 0.$ Alors $\varphi:x\mapsto \ln(|u(x)|)$ est dérivable sur I avec:

$$\forall x \in I, \ \varphi'(x) = \frac{u'(x)}{u(x)}.$$

Remarques (Logarithme de base 10 : utile en chimie, en SI)

On appelle logarithme de base 10 et on note \log_{10} ou log l'application de \mathbb{R}_+^* dans \mathbb{R} définie par:

$$\forall x \in \mathbb{R}_+^*, \ \log_{10}(x) = \frac{\ln x}{\ln 10}.$$

 $\log_{10}(x)$ est appelé logarithme de base 10 de x.

Le logarithme décimal possède les mêmes propriétés que le ln. Pour tout $(a,b) \in (\mathbb{R}_+^*)^2$,

$$\log_{10}(ab) = \log_{10}(a) + \log_{10}(b) \qquad \qquad \log_{10}\left(\frac{a}{b}\right) = \log_{10}(a) - \log_{10}(b).$$

Remarques (Logarithme de base 2 : utile en info)

On appelle logarithme de base 2 et on note \log_2 l'application de \mathbb{R}_+^* dans \mathbb{R} définie par:

$$\forall x \in \mathbb{R}_+^*, \ \log_2(x) = \frac{\ln x}{\ln 2}.$$

2

III Fonction exponentielle

Théorème-Définition (Fonction exponentielle)

L'application $\ln : \mathbb{R}_+^* \to \mathbb{R}$ est bijective, la bijection réciproque est appelée **exponentielle** notée $\exp : \mathbb{R} \to \mathbb{R}_+^*$.

Théorème (Propriétés de exp)

- 1) **Dérivabilité**. La fonction $\exp : \mathbb{R} \to \mathbb{R}_+^*$ est dérivable avec: $\forall x \in \mathbb{R}, \exp'(x) = \exp(x)$.
- 2) **Propriétés calculatoires** $\forall (a,b) \in \mathbb{R}^2$, $\exp(a+b) = \exp(a) \exp(b)$, $\exp(a-b) = \frac{\exp(a)}{\exp(b)}$.

$$\forall a \in \mathbb{R}, \quad \forall n \in \mathbb{Z}, \quad \exp(na) = \exp(a)^n.$$

3) Limites usuelles $\lim_{x \to +\infty} \exp(x) = +\infty \qquad \qquad \lim_{x \to -\infty} \exp(x) = 0^+$

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1.$$

4) Inégalité classique $\forall x \in \mathbb{R}, \qquad \exp(x) \geqslant x+1.$

Explication The La propriété 2) du théorème précédent justifie de noter la fonction exponentielle sous la forme puissance $\exp(x) = e^x$ où $e = \exp(1)$.

IV Fonctions puissances

Définition }

Soit $\alpha \in \mathbb{R}$, on appelle **fonction puissance** d'exposant α l'application $p_{\alpha}: \mathbb{R}^*_+ \to \mathbb{R}$ $x \mapsto x^{\alpha} = e^{\alpha \ln(x)}$

Explication Sur les valeurs de α . Pour pouvoir définir la fonction pour toutes les valeurs de $\alpha \in \mathbb{R}$, il est nécessaire d'imposer $x \in \mathbb{R}_+^*$. Cependant pour certaines de valeurs de α , on peut agrandir l'ensemble de définition:

- si $\alpha > 0$, $x \mapsto x^{\alpha}$ est prolongeable par continuité en 0, et vaut 0 en 0, donc $x \mapsto x^{\alpha}$ est prolongée à \mathbb{R}^+
- si $\alpha = 0, x \mapsto x^{\alpha}$ est constante égale à 1 et est définie en 0 égale à 1,
- si $\alpha \in \mathbb{N}$, $x \mapsto x^{\alpha} = x \times \cdots \times x$ est définie sur \mathbb{R} (vérifier la cohérence des deux définitions)
- si $\alpha \in \mathbb{Z}_{-}^{*}$, $x \mapsto x^{\alpha} = \frac{1}{x^{-\alpha}} \ (-\alpha \in \mathbb{N})$ est définie sur \mathbb{R}^{*} (vérifier la cohérence des deux définitions).

Propriétés (Règles de calculs)

1)
$$\forall (\alpha, \beta) \in \mathbb{R}^2$$
, $\forall x \in \mathbb{R}_+^*$, $x^{\alpha} x^{\beta} = x^{\alpha + \beta}$

2)
$$\forall (\alpha, \beta) \in \mathbb{R}^2$$
, $\forall x \in \mathbb{R}_+^*$, $(x^{\alpha})^{\beta} = x^{\alpha\beta}$

3)
$$\forall (\alpha, \beta) \in \mathbb{R}^2$$
, $\forall x \in \mathbb{R}^*_+$, $\frac{x^{\alpha}}{x^{\beta}} = x^{\alpha - \beta}$.

Théorème (Dérivée de la fonction puissance)

La fonction puissance est dérivable sur \mathbb{R}_{+}^{*} de dérivée:

$$\forall \alpha \in \mathbb{R}, \ \forall x \in \mathbb{R}_+^*, \ p'_{\alpha}(x) = \alpha x^{\alpha - 1}.$$

Remarques (Expression de la forme $u(x)^{v(x)}$)

C'est un **réflexe**, quand on a affaire à une expression de fonction de forme $u(x)^{v(x)}$, on commence par passer à l'écriture exponentielle, $u(x)^{v(x)} = e^{v(x)\ln(u(x))}$ ce qui donne les premières contraintes vérifiées par x, à savoir u(x) > 0.

Exercice. Calculer les deux limites $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$ et $\lim_{x\to 0} (1-x)^{\frac{1}{x}}$.

Exercice. Déterminer l'ensemble de définition de la fonction f d'expression $f(x) = x^x$. Puis étudier sa dérivabilité et calculer sa dérivée.

4

Exercice. Résoudre dans \mathbb{R} l'équation (E): $2^{x+4} + 3^x = 2^{x+2} + 3^{x+2}$.

\mathbf{V} Croissances comparées

Théorème (Croissances comparées élémentaires)

1)
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$
 2) $\lim_{x \to 0^+} x \ln(x) = 0$

2)
$$\lim_{x \to 0^+} x \ln(x) = 0$$

3)
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
 4)
$$\lim_{x \to -\infty} x e^x = 0$$

$$4) \lim_{x \to -\infty} x e^x = 0$$

Remarques (Négligeabilité)

On dit que $\ln x$ est négligeable devant x au voisinage de $+\infty$, ou que x est prépondérant sur $\ln x$, et que xest négligeable devant e^x au voisinage de $+\infty$, ou que e^x est prépondérant sur x.

Exercice. Calculer $\lim_{x \to +\infty} \frac{\ln(x)}{e^x}$.

Théorème (Croissances comparées générales)

1) Soient
$$\alpha > 0$$
, $\beta > 0$, $\lim_{x \to +\infty} \frac{(\ln(x))^{\alpha}}{x^{\beta}} = 0$ 3) Soient $\gamma > 0$, $\alpha \in \mathbb{R}$, $\lim_{x \to +\infty} \frac{\mathrm{e}^{\gamma x}}{x^{\alpha}} = +\infty$

3) Soient
$$\gamma > 0$$
, $\alpha \in \mathbb{R}$, $\lim_{x \to +\infty} \frac{e^{\gamma x}}{x^{\alpha}} = +\infty$

2) Soient
$$\alpha > 0$$
, $\beta > 0$, $\lim_{x \to 0^+} x^{\beta} |\ln(x)|^{\alpha} = 0$ 4) Soient $\gamma > 0$, $\alpha \in \mathbb{R}$, $\lim_{x \to -\infty} e^{\gamma x} |x|^{\alpha} = 0$.

4) Soient
$$\gamma > 0$$
, $\alpha \in \mathbb{R}$, $\lim_{x \to -\infty} e^{\gamma x} |x|^{\alpha} = 0$.

Remarques (Négligeabilité)

On dit que $(\ln(x))^{\alpha}$ est négligeable devant x^{β} au voisinage de $+\infty$, et que x^{β} est négligeable devant $e^{\gamma x}$ au voisnage de $+\infty$.

Exercice - Calculer les limites suivantes:

$$1) \lim_{x \to +\infty} \frac{x^3}{e^{\sqrt{x}}}$$

2)
$$\lim_{x \to 0^+} \sqrt{x^2 + x} \ln x$$

2)
$$\lim_{x \to 0^+} \sqrt{x^2 + x} \ln x$$
 3) $\lim_{x \to +\infty} (\ln(x))^3 e^{-x} x^6$ 4) $\lim_{x \to +\infty} \frac{2^{5x}}{x^2}$

$$4) \lim_{x \to +\infty} \frac{2^{5x}}{x^2}$$