Exercice 1. Séries de Bertrand On souhaite étudier la nature de la série $\sum \frac{1}{n^{\alpha} \ln^{\beta}(n)}$ en fonction de α et β réels.

- 1) Cas $\alpha > 1$ et $\beta \in \mathbb{R}$.
 - -a- Déterminer la nature de $\sum \frac{1}{n^2 \ln^5(n)}$
 - -b- Déterminer la nature dans le cas général $\alpha > 1$ et $\beta \in \mathbb{R}$
- 2) Cas $\alpha < 1$ et $\beta \in \mathbb{R}$.
 - -a- Déterminer la nature de $\sum \frac{1}{n^{\frac{1}{2}} \ln^5(n)}$
 - -b
- Déterminer la nature dans le cas général $\alpha<1$ et
 $\beta\in\mathbb{R}$
- 3) Cas $\alpha = 1, \beta \leq 0$. Montrer que la série diverge. Le faire pour $\beta = -2$ si vous voulez simplifier
- 4) Cas $\alpha = 1, \beta > 0$. Utiliser une comparaison série intégrale pour déterminer les valeurs de β pour lesquelles la série est convergente. Le faire pour $\beta=2$ si vous voulez simplifier
- 5) Déterminer un équivalent de $\sum_{k=2}^{n} \frac{1}{k \ln k}$.