Trigonométrie circulaire

Exercice 1

- 1) (\heartsuit) Déterminer la limite en 0 de $\frac{\operatorname{Arcsin} x}{x}$.
- 2) (*)Déterminer la limite en 1, de $\frac{\arctan^2(x) \frac{\pi^2}{16}}{x^2 1}$.

Exercice 2 Montrer les relations suivantes:

- 1) $(\heartsuit) \forall x \in [-1, 1], \operatorname{Arccos}(-x) + \operatorname{Arccos}(x) = \pi$
- 2) $(*)\forall x \in]-1,1]$, Arctan $\sqrt{\frac{1-x}{1+x}} = \frac{1}{2} \operatorname{Arccos}(x)$

Exercice 3. (*) Montrer que pour tout $x \in \mathbb{R}^+$, Arctan $x \ge \frac{x}{1+x^2}$.

Exercice 4. (*) Soit la fonction $f: x \mapsto \operatorname{Arcsin}\left(\frac{x}{\sqrt{1+x^2}}\right)$.

- 1) Déterminer le domaine de définition de f.
- 2) Étudier la continuité la dérivabilite de f et calculer sa dérivée.
- 3) En déduire une expression plus simple de f.

Exercice 5. (*) Représenter graphiquement la fonction d'expression $\operatorname{Arccos}(\cos x)$.

Exercice 6. (*) Simplifier la fonction f d'expression $f(x) = \operatorname{Arccos}(\cos(x)) + \frac{1}{2}\operatorname{Arccos}(\cos(2x))$ pour en tracer le graphe.

Exercice 7. (*) Simplifier les expressions suivantes en précisant leur domaine de définition

1) tan(Arcsin(x))

2) $\sin(2\operatorname{Arccos} x)$

3) $\sin(\operatorname{Arctan} x)$

Exercice 8. (*) Démontrer la formule de Hutton, $2 \arctan \left(\frac{1}{3}\right) + \arctan \left(\frac{1}{7}\right) = \frac{\pi}{4}$.

Exercice 9 Résoudre dans $\mathbb R$ les équations

- 1) (\heartsuit) Arcsin $\left(\frac{3}{4+x^2}\right)$ + Arccos $\frac{2}{3} = \frac{\pi}{2}$
- 2) (*)Arccos(x) = Arcsin(2x)
- 3) (**)Arcsin x +Arccos $(x\sqrt{2}) = \frac{\pi}{4}$.

Exercice 10. (*) Faire l'étude de la fonction d'expression $f(x) = Arctan\left(\frac{x}{1-x^2}\right)$ pour en effectuer le tracé de la courbe représentative.

Exercice 11. (**) Soit $(a, b) \in (]-1, 1[)^2$.

- 1) Montrer qu'il existe un unique $c \in \mathbb{R}$ tel que $\arctan a + \arctan b = \arctan c$.
- 2) Déterminer cette valeur de c.

Trigonométrie hyperbolique

Exercice 12. (\heartsuit) Montrer que pour tout $(a,b) \in \mathbb{R}^2$,

$$ch(a+b) = ch a ch b + sh a sh b$$

$$\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{ch} a \operatorname{sh} b.$$

Exercice 13. (*) Montrer que pour tout $x \in \mathbb{R}$, $\operatorname{ch} x \geqslant 1 + \frac{x^2}{2}$.

Exercice 14. (\heartsuit) Résoudre dans \mathbb{R} :

1)
$$ch x = 3$$
.

$$2) 3 \operatorname{sh} x - \operatorname{ch} x = 1$$

Exercice 15. (*)

1) Montrer que pour tout $(a,b) \in \mathbb{R}^2$, $\operatorname{ch} a + \operatorname{ch} b = 2 \operatorname{ch} \left(\frac{a+b}{2}\right) \operatorname{ch} \left(\frac{a-b}{2}\right)$.

2) Résoudre dans \mathbb{R} l'équation $\operatorname{ch} x + \operatorname{ch}(5x) = 4\operatorname{ch}(2x)$.

Exercice 16. (*) Soit f la fonction définie par $f(x) = \operatorname{Arccos}(\frac{\operatorname{sh} x}{\operatorname{ch} x}) + 2 \operatorname{Arctan}(e^x)$ pour $x \in \mathbb{R}$.

1) Vérifier que l'ensemble de définition de f est \mathbb{R} .

2) Étudier la dérivabilité de f et calculer f'.

3) En déduire l'expression de f.

Exercice 17. (*) Calculer pour $n \in \mathbb{N}$,

$$S_n = \sum_{k=0}^n \operatorname{ch}(a+kb) \qquad T_n = \sum_{k=0}^n \operatorname{sh}(a+kb).$$

Exercice 18. (*) Calculer les limites suivantes:

1)
$$\lim_{x \to 0} \frac{\sin x}{x}$$

$$2) \lim_{x \to +\infty} \frac{\sinh x}{x}$$

4)
$$\lim_{x \to +\infty} x - \ln(\operatorname{ch} x)$$

3)
$$\lim_{x \to 0} (1 - \cos x)^{\sinh x}$$

$$5) \lim_{x \to +\infty} \operatorname{th}(x)^x$$