Divisibilité - Congruences

Exercice 1. (\heartsuit) Montrer que pour tout $n \in \mathbb{N}$, n^2 divise $(n+1)^n - 1$.

Exercice 2. (\heartsuit) Résoudre dans \mathbb{Z} les équations suivantes

1)
$$x - 3|x + 7$$

2)
$$x + 2|x^2 + 2$$

Exercice 3. (\heartsuit) Résoudre dans \mathbb{Z}^2 les équations suivantes

$$1) \ xy = 3x + 4y$$

3)
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{5}$$

2)
$$x^2 - y^2 = 5$$

4)
$$x^2 - y^2 - 4x - 2y = 5$$
.

Exercice 4. (\heartsuit) Résoudre dans \mathbb{Z}^2 les équations suivantes

1)
$$x^2 - 2y^2 = 3$$
 en raisonnant modulo 8

2)
$$15x^2 - 7y^2 = 9$$
 en raisonnant modulo 3

Exercice 5. (*) Montrer que l'équation $2^n + 1 = m^3$ d'inconnue $(m, n) \in \mathbb{N}^2$ n'admet pas de solution.

Exercice 6. (**) Soient $a \in \mathbb{N}$, $b \in \mathbb{N}^*$.

- 1) Montrer que si r est le reste de la division euclidienne de a par b alors $2^r 1$ est le reste de la division euclidienne de $2^a - 1$ par $2^b - 1$.
- 2) En déduire que $(2^a 1) \wedge (2^b 1) = 2^{a \wedge b} 1$.

Exercice 7. (\heartsuit) Trouver le reste de la division euclidienne de 100^{1000} par 13.

Exercice 8. (\heartsuit) Montrer que

1)
$$\forall n \in \mathbb{N}, \ 7 \mid 3^{2n+1} + 2^{n+2}$$

2)
$$\forall n \in \mathbb{N}, \ 17 \mid 7^{8n+1} + 10(-1)^n$$
 3) $\forall n \in \mathbb{N}, \ 9 \mid 2^{2n} + 15n - 1.$

3)
$$\forall n \in \mathbb{N}, 9 \mid 2^{2n} + 15n - 1$$

Exercice 9. (*) Soient $x, y, z \in \mathbb{Z}$.

- 1) Montrer que $x^2 + y^2$ est divisible par 7 si et seulement si x et y le sont.
- 2) Montrer que si $x^3 + y^3 + y^3$ est divisible par 7 alors l'un des entiers x, y ou z l'est aussi.

Exercice 10. (*) Montrer que dans la suite (u_n) de terme général $u_n = 2^n - 3$, il y a:

- 1) une infinité de termes divisibles par 5
- 2) une infinité de termes divisibles par 13
- 3) aucun terme divisible par 65.

Exercice 11. (*) Montrer que le produit de k entiers consécutifs est divisible par k!.

PGCD-PPCM

Exercice 12. (\heartsuit) Déterminer le PGCD de a et b et étalissez une relation de Bezout dans les cas suivants

1)
$$a = 39$$
 et $b = 15$

2)
$$a = 41$$
 et $b = 23$

3)
$$a = 195$$
 et $b = 105$

Exercice 13. (\heartsuit) Soit $n \in \mathbb{N}$, calculer

1)
$$(2n+4) \wedge (3n+3)$$

2)
$$(n^2 + n) \wedge (2n + 1)$$

Exercice 14. (*) Résoudre dans \mathbb{N}^2 les équations suivantes

1)
$$\begin{cases} x \land y = 5 \\ x \lor y = 60 \end{cases}$$

$$\begin{cases} x + y = 100 \\ x \land y = 10 \end{cases}$$

Exercice 15. (*) Résoudre dans \mathbb{N}^2 l'équation $11(x \wedge y) + (x \vee y) = 203$.

Entiers premiers entre eux

Exercice 16. (\heartsuit) Soient a et b deux nombres premiers entre eux.

- 1) Montrer que $a \wedge (a+b) = b \wedge (a+b) = 1$.
- 2) En déduire que $(a+b) \wedge ab = 1$.

Exercice 17. (*) Soit $(a, b, c) \in \mathbb{Z}^3$ tel que $a \wedge b = 1$. Montrer que $a \wedge bc = a \wedge c$.

Exercice 18. (\heartsuit) Résoudre dans \mathbb{Z}^2 les équations suivantes

1)
$$41x + 23y = 5$$

2)
$$39x + 15y = 7$$

Exercice 19. (*)Restes chinois

- 1) Résoudre dans \mathbb{Z}^2 le système $\begin{cases} x \equiv 7 & [8] \\ x \equiv 1 & [13] \end{cases}$.
- 2) Cas général. Soient deux entiers n_1 et n_2 premiers entre eux. Pour tout $(a_1,a_2) \in \mathbb{Z}^2$, montrer qu'il existe un entier $p \in \mathbb{Z}$ tel que pour tout $x \in \mathbb{Z}$, $\begin{cases} x \equiv a_1 \ [n_1] \\ x \equiv a_2 \ [n_2] \end{cases} \Leftrightarrow x \equiv p \ [n_1 n_2].$

Exercice 20. (*)

- 1) Montrer qu'il existe un unique couple $(a_n, b_n) \in \mathbb{N}^2$ tel que $(1 + \sqrt{2})^n = a_n + b_n \sqrt{2}$.
- 2) Montrer que a_n et b_n sont premiers entre eux.

Exercice 21. (*) L'équation $x^3 + x^2 + 2x + 1 = 0$ admet-elle des solutions rationnelles?

Exercice 22. (**)- Triplets pythagoriciens

- 1) Soient $x, y, z \in \mathbb{N}^*$ tels que $x \wedge y = 1$.
 - -a- Montrer que $y \wedge z = 1$.
 - -b- Montrer que x ou y est pair. Quitte à les échanger, on suppose désormais y pair.
 - -c- Montrer que $(y+z) \wedge (z-y) = 1$. Puis qu'il existe $a,b \in \mathbb{N}^*$, impairs et premiers entre eux tels que $y+z=a^2$ et $z-y=b^2$.
 - -d- En déduire la forme du triplet (x, y, z).
- 2) Résoudre finalement l'équation $x^2 + y^2 = z^2$ d'inconnues $x, y, z \in \mathbb{N}^*$.

Exercice 23. (*) Soient a_1, \ldots, a_n n entiers premiers entre eux deux à deux. Pour $i \in [1, n]$, on pose

$$\widetilde{a_i} = \prod_{\substack{i \neq j \\ zz \\ zz}}^n a_j.$$

2

Montrer que les entiers $\widetilde{a_1}, \dots, \widetilde{a_n}$ sont premiers entre eux dans leur ensemble.

Nombres premiers

Exercice 24. (\heartsuit) Montrer que pour tout $n \in \mathbb{N} \setminus \{0,1\}$, $\frac{1}{4}(n^3 + (n+2)^3)$ n'est pas premier.

Exercice 25. (♡)

- 1) Soit $(a, d, n) \in (\mathbb{N}^*)^3$. Montrer que si d divise n alors $a^d 1$ divise $a^n 1$.
- 2) Soit $m \in \mathbb{N}$. En déduire que si $2^m 1$ est premier alors m est premier.

Exercice 26. (*) Déterminer les nombres premiers p tels que $p^2 + 2$ soit lui-même premier.

Exercice 27. (♡)

- 1) Soit $n \ge 2$. Montrer que l'intervalle d'entiers [n! + 2, n! + n] ne contient aucun nombre premier.
- 2) Montrer qu'il existe des intervalles d'entiers aussi long que l'on veut ne contenant pas de nombre premier.

Exercice 28. (*) Soit $n \in \mathbb{N}$. Montrer que si n est à la fois un carré parfait et un cube parfait alors il est la puissance 6ème d'un entier.

Exercice 29. (**) Soit $n \in \mathbb{N}$. On note p_n le n-ième nombre premier.

- 1) Montrer que $p_{n+1} \leq p_1 p_2 \cdots p_n + 1$.
- 2) En déduire que $p_n \leqslant 2^{2^n}$.
- 3) Soit $x \in \mathbb{R}_+$. On note $\pi(x)$ le nombre de nombres premiers inférieurs ou égaux à x. Démontrer que pour x assez grand :

$$\ln(\ln(x)) \leqslant \pi(x) \leqslant x.$$

Exercice 30. (**)- Formule de Legendre Soit p un entier premier et $n \in \mathbb{N}$.

Montrer que :

$$\nu_p(n!) = \sum_{k=1}^{+\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$$

où la somme est en réalité finie car $\left|\frac{n}{p^k}\right| = 0$ lorsque $p^k > n$.

Congruences

Exercice 31. (*)- Simplification d'une congruence

Soient $a, b, k \in \mathbb{N}$ et $n \in \mathbb{N}^*$. On suppose $k \wedge n = 1$.

Montrer que

$$a \equiv b \ [n] \Leftrightarrow ka \equiv kb \ [n].$$

Exercice 32. (*)- Inverse modulo n Soit $n \in \mathbb{N}^*$. On dit qu'un entier $a \in \mathbb{Z}$ admet un inverse modulo n s'il existe $a' \in \mathbb{Z}$ tel $aa' \equiv 1$ [n]. On dit que a' est UN inverse modulo n.

- 1) Déterminer les couples $(u, v) \in \mathbb{Z}^2$ vérifiant 3u + 7v = 1. En déduire que 3 admet un inverse modulo 7 et donner les inverses de 3 modulo 7.
- 2) Montrer que 4 n'admet pas d'inverse modulo 6.
- 3) Soit $a \in \mathbb{Z}$. Montrer que a admet un inverse modulo n si et seulement si $a \wedge n = 1$.
- 4) **Application**. Résoudre les deux équations : (E_1) $3x \equiv 4$ [20] (E_2) $12x \equiv 8$ [34].
- 5) Soit $a \in \mathbb{Z}$. Déterminer les solutions de l'équation $ax \equiv b [n]$.