

Exercice 1

1) Soit $n \in \mathbb{N}^*$, l'application f_n est dérivable sur $[0, +\infty[$ avec

$$\forall x \in [0, +\infty[, f'_n(x) = nx^{n-1} + 18x \ (> 0 \text{ si } x > 0)]$$

Par conséquent f_n est strictement croissante sur $]0, +\infty[$, donc strictement croissante sur $[0, +\infty[$. Finalement f_n est continue sur $[0, +\infty[$, strictement monotone sur $[0, +\infty[$ et donc d'après le théorème de la bijection monotone f_n réalise une bijection de $[0, +\infty[$ vers $f_n([0, +\infty[) = [-4, +\infty[$.

Finalement, comme $0 \in [-4, +\infty[$, il existe un unique $x_n \in [0, +\infty[$ tel que $f_n(x_n) = 0$

2) Soit $x \in \mathbb{R}$,

$$f_1(x) = 0 \Leftrightarrow 9x^2 + x - 4 = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{145}}{18}$$
 donc $x_1 = \frac{-1 + \sqrt{145}}{18}$

$$f_2(x) = 0 \Leftrightarrow 9x^2 + x^2 - 4 = 0 \Leftrightarrow 5x^2 = 2 \Leftrightarrow x = \pm \frac{\sqrt{2}}{\sqrt{5}}$$
 donc $x_2 = \frac{\sqrt{2}}{\sqrt{5}}$

- Méthode 1: soit $n \in \mathbb{N}^*$, on a $f_n(0) = -4$, $f_n(1) = 6$, de plus f_n continue sur]0,1[donc d'après le 3) théorème des valeurs intermédiaires il existe $c \in]0,1[$ tel que f(c)=0. L'unicité de x_n dans 1) donne $c = x_n$. Finalement $x_n \in]0,1[$
 - Méthode 2: on peut ré-appliquer le théorème de la bijection monotone à f_n sur]0,1[.
 - Méthode 3: $f_n(0) = -4$, $f_n(1) = 6$ et $f_n(x_n) = 0$ donc $f_n(0) < f_n(x_n) < f_n(1)$. On peut donc appliquer f_n^{-1} qui est strictement croissante comme f_n , d'après le théorème de la bijection monotone, pour obtenir $0 < x_n < 1$.
- -a- Soit $n \in \mathbb{N}^*, x \in]0,1[$

$$f_{n+1}(x) - f_n(x) = (x^{n+1} + 9x^2 - 4) - (x^n + 9x^2 - 4) = x^n(x - 1)$$
 donc $f_{n+1}(x) - f_n(x) < 0$

-b- Soit $n \in \mathbb{N}^*$, d'après 3), $x_{n+1} \in]0,1[$, donc d'après 4)-a- avec $x = x_{n+1}$

$$\underbrace{f_{n+1}(x_{n+1})}_{=0} - f_n(x_{n+1}) < 0 \quad \text{donc} \quad \boxed{f_n(x_{n+1}) > 0}.$$

Comme $f_n(x_n) = 0$, il vient $f_n(x_{n+1}) > f_n(x_n)$. En appliquant f_n^{-1} qui est strictement croissante il vient $x_{n+1} > x_n$ et donc la suite $(x_n)_{n \in \mathbb{N}^*}$ est strictement croissante.

- -c- Finalement la suite $(x_n)_{n\in\mathbb{N}^*}$ est croissante et majorée par 1 donc $(x_n)_{n\in\mathbb{N}^*}$ converge vers $l\in[0,1]$
- -a- Soit $n \in \mathbb{N}^*$, $f_n(x_n) = 0$ se réécrit $x_n^n = 4 9x_n^2$. Comme (x_n) converge vers l, on en déduit que (x_n^n) converge vers $4-9l^2$. Or (x_n^n) est positive car (x_n) est positive, donc par passage à la limite sa limite est positive i.e. $4-9l^2 \ge 0$. On en déduit que $l^2 \leqslant \frac{4}{9}$ et donc $0 \leqslant l \leqslant \frac{2}{3}$. Or d'après le théorème de la limite montone appliquée à

$$0 \leqslant x_n \leqslant l \leqslant \frac{2}{3}$$
 donc $0 \leqslant x_n^n \leqslant l^n \leqslant \left(\frac{2}{3}\right)^n \underset{n \to +\infty}{\longrightarrow} 0.$

 (x_n) , l est la borne supérieure de (x_n) , donc pour tout $n \in \mathbb{N}^*$,

Et donc, par théorème d'encadrement, $(x_n^n)_{n\in\mathbb{N}^*}$ converge vers 0. **Attention**: on ne peut utiliser le résultat qui affirme $q^n \underset{n \to +\infty}{\longrightarrow} 1$ pour $q \in]-1,1[$. Car q doit être indépendant de n, on ne peut donc prendre $q=x_n$ même s'il est vrai que $x_n\in]0,1[$.

Prenez par exemple $\left(1-\frac{1}{n}\right)^n \to e^{-1}$ (utilisez des équivalents par exemple) alors que $0 < 1-\frac{1}{n} < 1$.

- -b- En passant à la limite la relation $x_n^n = 4 9x_n^2$, il vient $0 = 4 9l^2$ d'où $l = \frac{2}{3}$ (car $l \ge 0$ d'après 4)-c-).
- 6) On pose $n \in \mathbb{N}^*$,

$$u_n = l - x_n \qquad S_n = \sum_{k=1}^n u_k.$$

-a- Tout d'abord comme déjà vu: $\forall n \in \mathbb{N}^*, x_n \leq l$ et donc: $\forall n \in \mathbb{N}^*, u_n \geq 0$. Soit $n \in \mathbb{N}^*$. De $x_n^n + 9x_n^2 - 4 = 0$ on tire:

$$\frac{1}{6}x_n^n = \frac{2}{3} - \frac{3}{2}x_n^2 = l - \frac{1}{l}x_n^2 = \frac{1}{l}(l^2 - x_n^2) = \frac{1}{l}\underbrace{(l - x_n)}_{=u_n}\underbrace{(l + x_n)}_{> l} \geqslant u_n.$$

On a donc bien: $\forall n \in \mathbb{N}^*, \ 0 \leqslant u_n \leqslant \frac{1}{6}x_n^n$.

-b- Tout d'abord pour $n \in \mathbb{N}^*$, $S_{n+1} - S_n = u_{n+1} \geqslant 0$ d'après 6)-a-, donc (S_n) est croissante. Soit $k \in \mathbb{N}^*$, d'après 6)-a- et le fait que $x_k \leqslant \frac{2}{3}$, on a: $u_k \leqslant \frac{1}{6} \left(\frac{2}{3}\right)^k$. On somme alors cette inégalité pour $k \in [\![1,n]\!]$, où $n \in \mathbb{N}^*$,

$$S_n \leqslant \frac{1}{6} \sum_{k=1}^n \left(\frac{2}{3}\right)^k = \frac{1}{6} \frac{2}{3} \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \frac{2}{3}} = \frac{1}{3} \left(1 - \left(\frac{2}{3}\right)^n\right) \leqslant \frac{1}{3}.$$

Donc (S_n) est majorée.

Donc d'après le théorème de la limite monotone, (S_n) converge