MPSI 2024-2025

Programme de colle

Semaine 26 : du 09/06 au 13/06

Thermodynamique

Chapitre T4: Machines thermiques

Cours et exercices

- Machine thermique : généralités, bilans énergétiques et entropiques ; inégalité de Clausius.
- Machine thermique monotherme : bilans énergétique et entropique et impossibilité de réaliser un cycle moteur.
- *Machine thermique ditherme* : schéma de principe et différents échanges, bilans énergétiques et entropiques, possibilité de moteur ou récepteur.
- *Moteur ditherme* :schéma de principe et différents échanges, bilans énergétiques et entropiques, théorème de Carnot pour le rendement maximal. Applications : cycle de Carnot et cycle de Beau de Rochas.
- Récepteur ditherme : schéma de principe et différents échanges, bilans énergétiques et entropiques, machines frigorifiques (définition de l'efficacité et théorème de Carnot pour l'efficacité maximale), pompes à chaleur (définition de l'efficacité et théorème de Carnot pour l'efficacité maximale).

Chapitre T5: Transitions de phase

Cours et exercices

- Transition de phase : définition, nomenclature, propriétés des différents états.
- Diagramme (P,T) du corps pur : zones, courbes de transitions de phase, interprétation du diagramme, point critique, point triple.
- Équilibre liquide-vapeur, diagramme de Clapeyron : isothermes d'Andrews, courbes de saturation, définition d'une vapeur sèche ou saturante, suivi de l'évolution isotherme ou isobare du corps pur.
- *Titre (ou fraction) massique, molaire* : définitions, théorème des moments (en utilisant les volumes massiques).
- Enthalpie massique de transition de phase : définition, signe des enthalpies pour des transitions opposées (ex : vaporisation/liquéfaction), lien avec le transfert thermique.
- Entropie massique de transition de phase, comparaison de l'entropie des différentes phases en utilisant le caractère ordonné/désordonné d'une phase et relation avec l'enthalpie massique de transition de phase.
- Bilans énergétique d'une transformation avec transition de phase.

MPSI 2024-2025

Quelques questions de cours possibles

- Démontrer l'inégalité de Clausius.
- Montrer qu'il n'est pas possible de réaliser un moteur avec une machine thermique monotherme. En déduire le type de cycle possible.
- Théorème de Carnot pour une machine frigorifique : retrouver l'efficacité maximale d'une machine frigorifique pour un cycle réversible.
- Théorème de Carnot pour une pompe à chaleur : retrouver l'efficacité maximale d'une pompe à chaleur pour un cycle réversible.
- Quelles informations peut-on obtenir du diagramme (P,T) d'un corps pur. Représenter un digramme et positionner les différentes phases du corps pur. Citer deux points importants sur ce diagramme.
- Diagramme de Clapeyron : Donner les définitions d'un liquide saturant, d'une vapeur saturante, d'une vapeur sèche, des courbes de rosée, d'ébullition et de saturation.
- Expliquer comment peut-on déterminer la composition d'un mélange diphasé à partir d'un point du diagramme de Clapeyron.

Remarque

Les expressions de l'entropie dans le cas d'une phase condensée indilatable et incompressible ou un gaz parfait doivent être fournies.

On rappelle l'expression de l'entropie d'un gaz parfait :

$$\begin{cases} S(T,V) &= C_V \ln\left(\frac{T}{T_0}\right) + nR \ln\left(\frac{V}{V_0}\right) + S(T_0, V_0) \\ S(T,P) &= C_P \ln\left(\frac{T}{T_0}\right) - nR \ln\left(\frac{P}{P_0}\right) + S(T_0, P_0) \\ S(P,V) &= C_V \ln\left(\frac{P}{P_0}\right) + C_P \ln\left(\frac{V}{V_0}\right) + S(P_0, V_0) \end{cases}$$

Ainsi que l'entropie d'une phase condensée : $S(T) = C \ln \left(\frac{T}{T_0}\right) + S(T_0)$