Quand est-ce qu'on peut utiliser la méthode complexe ?	Quel est le signal complexe x(t) associé au signal réel $x\left(t ight)=X_{m}\cos\left(\omega t+arphi ight)$?
Comment dériver en complexe ?	Comment intégrer en complexe ?
Définition de l'impédance	Impédances de la résistance, du condensateur et de la bobine ?
Impédances équivalentes d'impédances en série et en parallèle.	Définition de la résonance

	:/- 4		
$\underline{x}(t)$	$=X_m e^{j(\omega t-1)}$	$^{+\varphi)}=X$	$I_m e^{j\omega t}$

où $rac{X_m}{X_m}=X_m e^{jarphi}$ est l'amplitude complexe.

Pour le régime permanent d'un système linéaire

$$\int \underline{x}(t) \, \mathrm{d}t = \frac{\underline{x}(t)}{j\omega}$$

 $\frac{\mathrm{d}\underline{x}\left(t\right)}{\mathrm{d}t}=j\omega\times\underline{x}\left(t\right)$

- ullet L'impédance d'une résistance est $\underline{Z}_R=R\in\mathbb{R}$
- L'impédance d'un condensateur est

$$\underline{Z}_{C}=\frac{1}{jC\omega}$$

• L'impédance d'une bobine est

$$\underline{Z}_L=jL\omega$$

$$\underline{u}\left(t\right) = \underline{Z} \times \underline{i}\left(t\right)$$

- Situation très générale dans laquelle l'excitation périodique d'un système à une fréquence proche de la fréquence propre provoque une réponse de très forte amplitude.
- Pour deux dipôles d'impédance \underline{Z}_1 et \underline{Z}_2 associés **en série**,

$$\underline{Z}_{\mathrm{eq}} = \underline{Z}_1 + \underline{Z}_2$$

ullet Pour deux dipôles d'impédance \underline{Z}_1 et \underline{Z}_2 associés **en parallèle**,

$$\frac{1}{\underline{Z}_{\rm eq}} = \frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2}$$

Définition de la fonction de transfert, du gain	Définition de la bande passante et de la pul-
et du déphasage d'un filtre	sation de coupure
Forme canonique et diagramme de Bode pour	Forme canonique et diagramme de Bode pour
le filtre passe bas du premier ordre	le filtre passe hautdu premier ordre
Forme canonique et diagramme de Bode pour	Forme canonique et diagramme de Bode pour
le filtre passe bas du deuxième ordre	le filtre passe bande du deuxième ordre
Condition pour mettre des filtres en cascade	

La bande passante d'un filtre est

$$G\left(\omega
ight) \geq rac{G_{ ext{max}}}{\sqrt{2}} \iff G_{ ext{dB}}(\omega) \simeq G_{ ext{dB,max}} - 3 ext{dB}$$

pulsation de coupure,

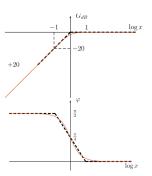
$$G\left(\omega_{c}
ight) = rac{G_{ ext{max}}}{\sqrt{2}} \iff G_{ ext{dB}}(\omega_{c}) \simeq G_{ ext{dB,max}} - 3 ext{dB}$$

$$\underline{H}(\omega) = \frac{\underline{s}}{\underline{e}} = \frac{\underline{S}_m}{\underline{E}_m} = \frac{S_m}{E_m} e^{j(\varphi_s - \varphi_e)} = \frac{S_m}{E_m} e^{j\Delta\varphi}$$

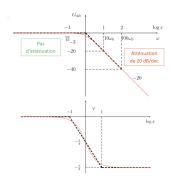
$$G\left(\omega
ight)=\left|\underline{H}\left(\omega
ight)
ight|=rac{S_{m}}{E_{m}}$$

$$\Delta \varphi = \varphi_s - \varphi_e$$

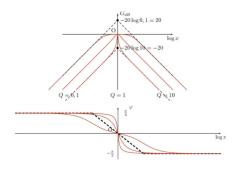
$$\underline{H}\left(\omega
ight)=rac{H_{0}jrac{\omega}{\omega_{0}}}{1+jrac{\omega}{\omega_{0}}}$$



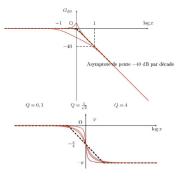
$$\underline{H}\left(\omega
ight)=rac{H_{0}}{1+jrac{\omega}{\omega_{0}}}$$



$$\underline{H}\left(\omega
ight)=rac{H_{0}}{1+jQ\left(rac{\omega}{\omega_{0}}-rac{\omega_{0}}{\omega}
ight)}$$



$$\underline{H}\left(\omega\right) = \frac{H_0}{1 + j\frac{\omega}{Q\omega_0} + \left(j\frac{\omega}{\omega_0}\right)^2}$$



En termes électriques, cela revient à considérer que le courant entrant dans la maille suivante est nul. Cette hypothèse reste valable si certaines conditions sont respectées, en particulier : l'impédance d'entrée du montage suivant est très grande, l'impédance de sortie du montage précédent est très faible.