BCPST 1 Durée: 1 heure Samedi 22 mars Page 1/8

Devoir Surveillé d'Informatique n°3

NOM	

Les candidats ne doivent faire usage d'aucun document, l'utilisation de toute calculatrice et de tout matériel électronique est **interdite**.

Pour chaque question, une et une seule réponse proposée est correcte. Il n'y a pas de point négatif dans ce QCM. Chaque bonne réponse vous rapportera 0,42 point.

1. Parcours de séquences

On tape le programme suivant dans l'éditeur :

```
def palin(ch):
    resultat1 = ""
    resultat2 = ""
    for c in ch:
        resultat1 = resultat1 + c
        resultat2 = c + resultat2
        print (resultat1)
    print (resultat2)
```

1. On appelle n la somme du nombre de sortie et d'entrée de ce programn	On appelle n la som	me du nomb	ore de sortie	et d'entrée	de ce pro	gramme, n v	aut:
---	-----------------------	------------	---------------	-------------	-----------	-------------	------

A) 0.

B) 1.

C) 2.

- D) 3.
- 2. Si ch, la donnée en entrée, est une chaîne de caractères alors resultat1 est :
 - A) Erreur.
- B) Une liste.
- C) Un entier.
- D) Une chaîne de caractères.

- 3. En tapant palin(1) dans la console, on obtient :
 - A) Erreur.
- B) [1].
- C) 1.

D) 11111.

- 4. En tapant palin("Bon") dans la console, on obtient :
 - A) Une erreur.

- C) "n" puis "no" puis "noB" puis "Bon"
- B) "B" puis "Bo" puis "Bon" puis "noB"
- D) "Bon" puis "noB"

5.	En tapant palin([1]) dans la console, on obtient :					
	A) Erreur.	B) [1].	C) 1.	D) 11111.		
6.	6. En tapant palin(Bon) dans la console, on obtient :					
	A) Une erreur.B) "B" puis "Bo" puis "Bon" puis "noB"		C) "n" puis "no" puis "noB" puis "Bon"D) "Bon" puis "noB"			
	On tape le programme son def compar(Li1,	Li2):) nge(n): Li1[x]==Li2[x]):				
7.	7. Combien d'erreur(s) ce programme comporte-t-il?					
	A) 0.	B) 1.	C) 2.	D) 3.		
8.	Ce programme renvoies	:				
	A) Rien.	B) Un booléen.	C) Une liste.	D) Un entier.		
9.	9. Supposons que les données en entrée soient $[1, [2, 3], 4]$ et $[5, 6, 7, 8]$ alors n ser					
	A) 3.	B) 4.	C) 2.	D) une erreur.		
10.	0. Si on tape compar([1, 2, 3, 4], [1, 2, 3, 4, 9]), on obtient:					
	A) True.	B) False.	C) 0.	D) Erreur.		
11.	1. Si on tape compar([1, 2, 3, 4], [1, 2, 3, 5, 9]), on obtient:					
	A) True.	B) False.	C) 0.	D) Erreur.		
	2. Liste et suite		t on tane ce programme			
	On importe totalement la bibliothèque numpy et on tape ce programme : def limite(e): u, n = 1-pi/4, 0					

while(abs(u)>e):

return n

n=n+1

u = 1/(2*n+3) - u

A) $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2 * n + 3} - u_n$.	C) $u_0 = 1 - \frac{\pi}{4}$ et $\forall r$	$n \in \mathbb{N}, u_{n+1} = \frac{1}{2 * n + 3} - u_n.$			
B) $u_0 = 1 - \frac{\pi}{4}$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2 * k + 3} - u_n$.	D) $u_0 = 0$ et $\forall n \in \mathbb{N}$	$\mathbb{N}, u_n = \frac{1}{2 * n + 3} - u_n.$			
14. Dans le programme limite, la variable d'entr	rée e est a priori :				
A) une liste.	C) un flottant prod	che de 0.			
B) un entier naturel grand.	D) un entier pair.				
15. En tapant limite(0.1) et en notant $(u_n)_{n\in\mathbb{N}}$ lobtient : A) u_{11} .	la suite ayant un rappo	ort avec ce programme, on			
B) Le plus petit entier naturel n tel que -0 .	$1 \leqslant u_n \leqslant 0, 1.$				
C) Le plus grand entier naturel n tel que -0	$0.1 \leqslant u_n \leqslant 0, 1.$				
D) Le plus petit entier naturel n tel que $u_n > 1$		(0,0004) 0			
16. En sachant que limite(0.01) renvoie 24, que	e peut renvoyer limite	2(0.0001)?			
A) Une erreur. B) 258.	C) 4.	D) 23.			
On tape le programme suivant dans l'éditeur :					
<pre>def Liste(n): u,m,L=1,1,[] for k in range(n): u= 2*u**2-k L.append(u) if u>m:</pre>					
17. En tapant Liste(0), on obtient:					
A) Rien. B) Une liste vide.	C) [1].	D) 1.			
18. Le programme Liste a un rapport avec la sui A) Pour tout entier naturel n , $u_{n+1} = 2u_n^2 - k$ B) Pour tout entier naturel n , $u_{n+2} = 2u_{n+1}^2 - k$ C) Pour tout entier naturel n , $u_{n+1} = 2u_n^2 - k$ D) Pour tout entier naturel n , $u_n = 2u_{n+1}^2 - (u_n)_{n \in \mathbb{N}}$ désignera, jusqu'à la fin de cette par	$\begin{array}{l} \vdots \\ -u_n \\ \vdots \\ n-1 \end{array}$	$u_0 = 1 \text{ et}:$			

12. Importer totalement la bibliothèque numpy, cela signifie que l'on a écrit :

13. Le programme l'imite a un rapport avec la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

C) import numpy as np

D) import numpy as *

A) from numpy import *

B) import numpy

- 19. Liste(10) renvoie:
 - A) $[u_0, u_1, \dots, u_{10}]$. B) $[u_1, u_2, \dots, u_{10}]$. C) u_{10} .

D) u_{11} .

- 20. Liste(10) affiche:
 - A) $[u_0, u_1, \cdots, u_{10}]$.

- C) Le maximum de $\{u_1, u_2, \dots, u_{10}\}$.
- B) u_1 puis u_2 puis u_3 jusqu'à u_{10} .
- D) Le maximum de $\{u_0, u_1, \dots, u_{10}\}.$

On tape enfin ces programmes dans l'éditeur :

```
def suiterecdouble(n):
    u, v, L=1, 1, [u, v]
    for k in range(n-1):
          u, v=v, v+2*u/(k+2)
          L.append(v)
    return L
def suiterecdouble2(n):
    L=[1,1]
    for k in range(n-1):
          L.append(L[-1]+2*L[-2]/(k+2))
    return L
def verif(n):
    for k in range(n):
        a=suiterecdouble(k)==suiterecdouble2(k)
        if not(a):
            return k
    return True
```

- 21. Si n, la donnée en entrée de verif, est un entier naturel alors verif (n) peut renvoyer :
 - A) deux entiers,
- B) une liste,
- C) Erreur,
- D) un booléen.

- 22. Dans le programme verif, a est :
 - A) un entier,
- B) une liste,
- C) un flottant,
- D) un booléen.

On note désormais $(u_n)_{n\in\mathbb{N}}$ la suite ayant un rapport avec le programme suiterecdouble et $(v_n)_{n\in\mathbb{N}}$ la suite ayant un rapport avec le programme suiterecdouble2.

- 23. Si verif(13) renvoie 5, que peut-on en déduire?
 - A) $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ ont 5 termes communs sur l'ensemble [0,13].
 - B) On peut juste dire que $u_5 = v_5$.
 - C) On peut juste dire que $u_5 \neq v_5$.
 - D) On peut dire que $u_5 \neq v_5$ et en déduire d'autre chose.
- 24. Si verif(13) renvoie 13, que peut-on en déduire?
 - A) $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont confondues sur l'ensemble [0,12].
 - B) $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont confondues sur l'ensemble [0,13].
 - C) On peut dire que $u_{13} \neq v_{13}$.

		e, que peut-on en dédui ent confondues sur l'ense ent confondues sur l'ense $0.3 \neq v_{13}$. eas renvoyer True.	emble [[0,12]].			
	A) 5.	B) 4.	C) False.	D) True.		
27.	Si verif(13) renvoie 5, q	ue renvoie verif(14)?				
	A) 5.	B) 4.	C) False.	D) True.		
28.	Si verif(13) renvoie 5, q	ue renvoie verif(4)?				
	A) 5.	B) 4.	C) False.	D) True.		
29.	9. $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$, $u_1=1$ et, pour tout entier naturel n , on a :					
	A) $u_{n+1} = u_n + \frac{2u_n}{n+2}$. B) $u_{n+1} = u_n + \frac{2u_n}{(n-1)+1}$	<u>2</u> .	C) $u_{n+2} = u_{n+1} + \frac{2u_n}{n+2}$. D) $u_{n+2} = u_n + \frac{2u_{n+1}}{n+2}$.			
30.	30. $(v_n)_{n\in\mathbb{N}}$ est définie par $v_0=1$, $v_1=1$ et, pour tout entier naturel n , on a :					
	A) $v_{n+1} = v_n + \frac{2v_n}{n+2}$. B) $v_{n+1} = v_n + \frac{2v_n}{(n-1)+1}$		C) $v_{n+2} = v_{n+1} + \frac{2v_n}{n+2}$. D) $v_{n+2} = v_n + \frac{2v_{n+1}}{n+2}$.			
	3. Les graphique	ues				
	t = np.linspace y = [a*m.sin(a)	ib.pyplot as plt (0, 10, 100)]]==np.shape(t)[0]				
31.	1. Combien faut-il encore importer de bibliothèque(s) pour que ce script tourne? :					
	A) 1.	B) 2.	C) 3.	D) 4.		

32.	l faut terminer la définition de y. Vous proposez de remplacer les · · · par :					
	A) for a in range(t	or a in range(t).		C) while a < t.		
	B) for t in t.		D) for a in t.			
	On imagine désormais, pour la suite des questions, que le programme tourne bien.					
33. La longueur de la liste t est :						
	A) 10.	B) 90.	C) 3.	D) 100.		
34. La longueur de la liste y est :						
	A) 10.	B) 90.	C) 3.	D) 100.		
35.	Ce script trace le graphe	de f avec :				
	A) $f: x \mapsto x \sin(x)$.		C) $f: x \mapsto a * m \sin(a)$.			
	B) $f = \sin$.		D) $f: x \mapsto \sin(x^2)$.			
36. Dans ce script, <i>b</i> est :						
	A) True.	B) False.	C) 100.	D) 99.		
37.	7. On va voir le tracé de cette fonction sur :					
	A) R.	B) [0,10].	C) [0,5].	D) [0,100].		
38.	8. Le tracé sera :					
	A) rouge en conti- nue.	B) rouge en poin- tillé.	C) noir en continue.	D) noir en pointillé.		
	<pre>On vous propose le programme suivant pour implémenter l'algorithme de Dichotomie: def dicho(f,a,b,esp): while (b-a)>eps: u=(a+b)/2 if f(a)*f(u)<=0:</pre>					
2.0						
39.	9. Que faut-il mettre à la place de la ligne xxxxxxxxxxxxxxxxxxxx?					

B) a = u. C) b > a. D) a = b.

A) b = u.

- 40. Que dire de la quantité esp de ce programme? A) A priori, c'est un entier naturel grand. D) A la fin du programme, b - a est strictement supérieur à esp. B) A priori, c'est un flottant proche de 0. C) f(esp) doit être proche de 0. 41. Si on souhaite savoir le nombre d'itérations effectuées, on va : A) mettre n = n + 1 dans la boucle while. B) mettre n = 0 avant la boucle while et n = 2 * n dans la boucle while. C) mettre n = 1 avant la boucle while et n = n + 1 dans la boucle while. D) mettre n = 0 avant la boucle while et n = n + 1 dans la boucle while. 42. Si di cho (f, 0, 3, 0.1) renvoie 1, que peut-on en déduire? A) f(1) doit être proche de 0. C) f(0.1) doit être proche de 0. B) f(3) doit être proche de 0. D) f(1) est compris entre -0.1 et 0.1. 5. Intégration numérique On vous propose le programme suivant dans l'objectif de calculer $\int_{0}^{1} \cos(t) dt$:
- 43. Que faut-il mettre à la place des xxxxxxxxxxxxxxxxxxxxxxx

- A) f(k/n).
- B) f(k).
- C) k/n.
- D) 1/nf(k/n).

- 44. Quelle exécution est crédible pour obtenir ce qu'on veut?
 - A) Rectangles()

C) Rectangles (10, m.cos).

B) Rectangles (m.cos, 100).

def Rectangles(f, n):

- D) Rectangles (m.cos, 0, 1).
- 45. Si on souhaite calculer $\int_{1}^{2} \cos(t)dt$ avec ce programme, on va définir d'abord une fonction g qui prend un réel t et qui renvoie :
 - A) cos(t+1).
- B) $\cos(t-1)$. C) $\cos(t/2)$. D) $\cos(t^2)$.

- 46. On utilise Python pour transformer une photo en tableau. Si ce tableau est constitué de flottants de [0,1], on peut dire que notre photo était :
 - A) en niveau de gris.
- B) en couleur.
- C) en noir et blanc.
- D) était carrée.

6. Trions!

- 47. Dans la liste suivante, quel est le tri qui est à votre programme?
 - A) Le tri par sélection.
- B) Le tri à peigne.
- C) Le tri rapide.
- D) Le tri par tas.

On vous propose le programme suivant :

- 48. Ce programme:
 - A) trie une liste dans l'ordre croissant.
 - B) trie une liste dans l'ordre décroissant.
 - C) ne fonctionne pas, il comporte deux erreurs.
 - D) ne trie pas totalement la liste, il se contente d'amener le plus petit élément de cette liste à la fin.
- 49. Que fait-on à l'intérieur des boucles for?
 - A) On échange deux termes consécutifs s'ils ne sont pas dans l'ordre croissant, rien sinon.
 - B) On échange deux termes consécutifs s'ils ne sont pas dans l'ordre décroissant, rien sinon.
 - C) On cherche le maximum de la liste d'entrée.
 - D) On cherche le minimum de la liste d'entrée.
- 50. Le dernière opération effectuée par ce programme consistera à :
 - A) ranger dans le bon ordre les deux derniers termes de la liste d'entrée.
 - B) ranger dans le bon ordre les deux premiers termes de la liste d'entrée.
 - C) trouver le maximum entre les deux derniers termes de la liste d'entrée.
 - D) trouver le minimum entre les deux premiers termes de la liste d'entrée.