Fonction génératrice des probabilités

On prendra comme convention : $0^0 = 1$.

Le triplet $(\Omega, \mathcal{A}, \mathbb{P})$ désigne un espace probabilisé ainsi que X et Y deux variables aléatoires définies sur cet espace.

I. Cas discret fini à valeurs entières

Définition 1.1

Soit $n \in \mathbb{N}^*$. Supposons que $X(\Omega) \subset [0; n]$.

La fonction génératrice des probabilités de X, notée G_X , est la fonction définie sur $\mathbb R$ par :

$$\forall t \in \mathbb{R}, \quad G_X(t) = \sum_{i=0}^n t^i \mathbb{P}([X=i])$$

Remarques:

 $\mathbf{R}\mathbf{1}$ – La somme étant finie G_X est bien définie sur \mathbb{R} .

 \mathbb{R}^2 – G_X est une fonction polynômiale dont les coefficients sont donnés par la loi de X.

Proposition 1.2

Avec les notations précédentes :

1. La fonction G_X est de classe \mathcal{C}^{∞} sur \mathbb{R} .

2.
$$\forall t \in \mathbb{R}, G_X(t) = \mathbb{E}\left(t^X\right)$$

3

$$G_X(1) = 1;$$
 $G'_X(1) = \mathbb{E}(X);$ $G''_X(1) = \mathbb{E}(X(X-1))$

4. Si X et Y sont indépendantes, alors : $G_{X+Y} = G_X \times G_Y$.

5. Pour tout
$$k \in \mathbb{N}, \mathbb{P}([X=k]) = \frac{G_X^{(k)}(0)}{k!}$$

Remarques:

R1 – D'après le dernier point, la fonction génératrice caractérise donc la loi.

 ${f R2}$ — Ainsi, d'après la formule de Koenig-Huygens :

$$V(X) = G_X''(1) + C_X'(1) - (G_X'(1))^2$$

 $\mathbf{R3}$ – Le point numéro 4 peut se généraliser ainsi :

Exercice 1

Calculer la fonction génératrices des moments dans les cas suivants

1.
$$X \hookrightarrow \mathcal{B}(p)$$

2.
$$X \hookrightarrow \mathcal{B}(n,p)$$

 \Box

Démonstration.

II. Cas discret infini à valeurs entières

Proposition 2.1

Supposons que $X(\Omega) \subset \mathbb{N}$.

Pour tout $t \in [-1;1]$, la série $\sum_{i \geq 0} t^i \mathbb{P}([X=i])$ est convergente.

 $D\'{e}monstration.$

Définition 2.2

Supposons que $X(\Omega) \subset \mathbb{N}$.

La fonction génératrice des probabilités de X, notée G_X , est la fonction définie sur [0-1;1] par :

$$\forall t \in [-1; 1], \quad G_X(t) = \sum_{i=0}^{+\infty} t^i \mathbb{P}([X=i])$$

On admet ensuite que les propriétés vues dans le cas discret se généralisent. Pour démontrer ces propriétés, il faudrait que l'on soit capables de dériver sous le signe $\sum_{i=0}^{+\infty}$, ce qui n'est pas le cas en ECG...

Proposition 2.3

Avec les notations précédentes :

- 1. La fonction G_x est \mathcal{C}^{∞} sur \mathbb{R}
- 2. $\forall t \in \mathbb{R}, G_x(t) = \mathbb{E}(t^x)$

3.

$$G_X(1) = 1;$$
 $G'_X(1) = \mathbb{E}(X);$ $G''_X(1) = \mathbb{E}(X(X-1))$

- 4. Si X et Y sont indépendantes, alors : $G_{X+Y} = G_X \times G_Y$.
- 5. Pour tout $k \in \mathbb{N}$, $\mathbb{P}([X = k]) = \frac{G_X^{(k)}(0)}{k!}$

Retenir

La fonction génératrice caractérise donc la loi.

Exercice 2

Calculer la fonction génératrices des moments dans les cas suivants

1.
$$X \hookrightarrow \mathfrak{G}(p)$$

2.
$$X \hookrightarrow \mathcal{P}(\lambda)$$

$\left(\mathbf{Exercice} \,\, \mathbf{3} \right)$

Soient $X \hookrightarrow \mathcal{P}(\lambda)$ et $Y \hookrightarrow \mathcal{P}(\mu)$. Montrer que si X et Y sont indépendantes, alors $X + Y \hookrightarrow \mathcal{P}(\lambda + \mu)$.