Devoir Surveillé n° 5

Le 08/04/23 Durée : 4 heures

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

Dans tout le problème, on considère une suite infinie de lancers d'une pièce équilibrée, c'est-à-dire pour laquelle, à chaque lancer, les apparitions de pile et de face sont équiprobables.

On admet que l'expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$. Pour tout entier naturel non

nul n, on désigne par R_n l'événement pile apparaît au lancer de rang n et par S_n l'événement face apparaît au lancer de rang n

Partie I: Un résultat utile

On considère une variable aléatoire X définie sur $(\Omega, \mathcal{A}, \mathbf{P})$, prenant ses valeurs dans \mathbb{N}^* et, pour tout entier naturel non nul n, on pose : $a_n = \mathbf{P}([X = n])$.

- 1. (a) Justifier que la suite $(a_n)_{n\geqslant 1}$ est une suite de nombres réels positifs ou nuls vérifiant $\sum_{n=1}^{+\infty} a_n = 1$.
 - (b) Montrer que, pour tout nombre réel x appartenant à l'intervalle [0,1], la série de terme général $a_n x^n$ est convergente.
- 2. On désigne par f la fonction définie sur l'intervalle [0,1] par :

$$\forall x \in [0, 1], \ f(x) = \sum_{n=1}^{+\infty} a_n x^n.$$

On suppose que cette fonction est dérivable au point 1; elle vérifie donc :

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{f(1) - f(x)}{1 - x} = f'(1)$$

(a) Établir pour tout nombre réel x de l'intervalle [0,1[l'égalité :

$$\frac{f(1) - f(x)}{1 - x} = \sum_{n=1}^{+\infty} \left(a_n \sum_{k=0}^{n-1} x^k \right).$$

(b) En déduire que la fonction $x \mapsto \frac{f(1) - f(x)}{1 - x}$ est croissante sur [0, 1[et qu'elle vérifie pour tout nombre réel x de l'intervalle [0, 1[les inégalités suivantes :

$$0 \leqslant \frac{f(1) - f(x)}{1 - x} \leqslant f'(1).$$

- (c) Montrer que, pour tout entier naturel N non nul, on $a: 0 \leq \sum_{n=1}^{N} na_n \leq f'(1)$. En déduire que la série de terme général na_n est convergente.
- (d) À l'aide des résultats des question a) et c), justifier pour tout nombre réel x de l'intervalle [0,1[, les inégalités suivantes :

$$0 \leqslant \frac{f(1) - f(x)}{1 - x} \leqslant \sum_{n=1}^{+\infty} na_n \leqslant f'(1)$$

(e) Montrer que la variable aléatoire X admet une espérance donnée par :

$$E(X) = f'(1)$$

Partie II : Loi du temps d'attente de la première configuration "pile, pile face"

Soit Y la variable aléatoire désignant le rang du lancer où pour la première fois apparaît un face précédé de deux piles si cette configuration apparaît, et prenant la valeur 0 si celle-ci n'apparaît jamais.

Par exemple, si les résultats des premiers lancers sont (face, face, pile, pile, face, pile, face, pile, face, pile, pile, face, pile, pile, face, pile, pile, pile, face, pile, pil

On pose $c_1 = c_2 = 0$ et, pour tout entier n supérieur ou égal à $3 : c_n = \mathbf{P}([Y = n])$.

Pour tout entier n supérieur ou égal à 3, on note B_n l'événement $R_{n-2} \cap R_{n-1} \cap S_n$ et U_n l'événement $\bigcup_{i=3}^n B_i$.

- 3. On pose $u_1 = u_2 = 0$, et pour tout entier n supérieur ou égal à $3 : u_n = \mathbf{P}(U_n)$. Montrer que la suite $(u_n)_{n \ge 1}$ est monotone et convergente.
- 4. (a) Calculer, pour tout entier naturel n supérieur ou égal à 3, la probabilité de l'événement B_n .
 - (b) Vérifier que, pour tout entier naturel n supérieur ou égal à 3, les événements B_n, B_{n+1} et B_{n+2} sont deux à deux incompatibles.
 - (c) En déduire les valeurs des nombres u_3, u_4 et u_5 .
- 5. Soit n un entier n supérieur ou égal à 5.
 - (a) Justifier l'égalité des événements $U_n \cap B_{n+1}$ et $U_{n-2} \cap B_{n+1}$ et préciser leur probabilité.
 - (b) Exprimer l'événement U_{n+1} en fonction des événements U_n et B_{n+1} ; en déduire l'égalité suivante : $u_{n+1} = u_n + \frac{1}{8}(1 u_{n-2})$.
 - (c) Vérifier les égalités suivantes $u_3 = u_2 + \frac{1}{8}(1 u_1)$ et $u_4 = u_3 + \frac{1}{8}(1 u_2)$.
 - (d) Déterminer la limite de la suite $(u_n)_{n\geq 1}$ et en déduire la probabilité de l'événement [Y=0].
- 6. Pour tout entier naturel non nul n, on pose : $v_n = 1 u_n$.
 - (a) Préciser les nombres v_1, v_2, v_3, v_4 .
 - (b) Exprimer, pour tout entier naturel n supérieur ou égal à 3, v_{n+1} en fonction de v_n et de v_{n-2} .
 - (c) En déduire pour tout entier N supérieur ou égal à 1, l'égalité suivante :

$$\frac{7}{8} - v_{N+3} = \frac{1}{8} \sum_{k=1}^{N} v_k.$$

- (d) Montrer que la série de terme général v_n est convergente et calculer sa somme.
- 7. Soit g et h les fonctions définies sur l'intervalle [0,1] par :

$$\forall x \in [0, 1], \quad g(x) = \sum_{n=1}^{+\infty} c_n x^n \quad \text{et} \quad h(x) = \sum_{n=1}^{+\infty} v_n x^n$$

- (a) Soit n un entier supérieur ou égal à 4. Exprimer l'événement [Y=n] en fonction des événements $\overline{U_{n-1}}$ et U_n ($\overline{U_{n-1}}$ désignant l'événement contraire de U_{n-1}). En déduire l'égalité : $c_n = v_{n-1} v_n$.
- (b) Valider l'égalité $c_n = v_{n-1} v_n$ dans le cas où n est égal à 2 ou 3.
- (c) Établir pour tout nombre réel x appartenant à l'intervalle [0,1], l'égalité : g(x) = (x-1)h(x) + x.
- (d) Exprimer pour tout nombre réel x appartenant à l'intervalle [0,1[, le quotient $\frac{g(x)-g(1)}{x-1}$ en fonction de h(x).
- (e) Justifier la croissance de la fonction h et, pour tout entier naturel N non nul et tout nombre réel x de l'intervalle [0,1], la double inégalité suivante :

$$\sum_{k=1}^{N} v_k x^k \leqslant h(x) \leqslant h(1).$$

En déduire la relation suivante :

$$\lim_{\substack{x \to 1 \\ x < 1}} h(x) = h(1).$$

(f) Montrer que g est dérivable au point 1 et, à l'aide de la Partie I, en déduire que la variable aléatoire Y admet une espérance égale à 8.

Partie III : Paradoxe de Walter Penney (1969)

Deux joueurs J et J' s'affrontent dans un jeu utilisant la même expérience aléatoire que précédemment avec les règles suivantes :

- le joueur J est gagnant si la configuration " pile, pile, face " apparaît dans la suite des résultats des lancers, avant que la configuration " face, pile, pile " n'apparaisse;
- le joueur J' est gagnant si la configuration " face, pile, pile " apparaît dans la suite des résultats des lancers, avant que la configuration " pile, pile, face " n'apparaisse;
- si l'un des joueurs est gagnant, l'autre est perdant.

On se propose de démontrer que, dans ce jeu, le joueur J' possède un net avantage sur le joueur J.

8. Soit Y' la variable aléatoire désignant le rang du lancer où, pour la première fois, apparaît un pile précédé d'un pile lui-même précédé d'un face si cette configuration apparaît, et prenant la valeur 0 si celle-ci n'apparaît jamais.

Par exemple, si les résultats des premiers lancers sont (face, face, pile, face, pile, face, mile, face, \dots), la variable aléatoire Y' prend la valeur 6.

Pour tout entier n supérieur ou égal à 3, on désigne par B'_n l'événement $S_{n-2} \cap R_{n-1} \cap R_n$, par U'_n l'événement $\bigcup_{i=3}^n B'_i$ et on note u'_n la probabilité de U'_n .

- (a) Soit n un entier supérieur ou égal à 3. Les événements B'_n, B'_{n+1} et B'_{n+2} sont-ils deux à deux incompatibles?
- (b) En déduire que, si on pose $u_1' = u_2' = 0$, le même raisonnement que dans la Partie II, conduit à l'égalité $u_{n+1}' = u_n' + \frac{1}{8}(1 u_{n-2}')$, pour tout entier n supérieur ou égal à 3.
- (c) En déduire l'égalité des suites $(u_n)_{n\geqslant 1}$ et $(u'_n)_{n\geqslant 1}$.
- (d) Prouver que les deux variables aléatoires Y et Y' suivent la même loi et vérifient : E(Y) = E(Y').
- 9. Pour tout entier n supérieur ou égal à 3, on note G_n l'événement " le joueur J est déclaré gagnant à l'issue du lancer de rang n" et g_n la probabilité de G_n .
 - (a) Calculer g_3 et g_4 et établir, pour tout entier n supérieur ou égal à 3, l'égalité suivante : $g_n = \left(\frac{1}{2}\right)^n$.
 - (b) En déduire la probabilité pour que le joueur J soit déclaré gagnant.
- 10. Pour tout entier naturel n non nul, on désigne par d_n la probabilité que lors des n premiers lancers n'apparaissent jamais deux piles consécutifs.
 - (a) Préciser d_1 et d_2 .
 - (b) En considérant les résultats des lancers de rang 1 et 2, justifier pour tout entier naturel n non nul, l'égalité suivante :

$$d_{n+2} = \frac{1}{2}d_{n+1} + \frac{1}{4}d_n.$$

- (c) Montrer qu'il existe deux constantes réelles α et β que l'on ne cherchera pas à calculer, telles que, pour tout tout entier naturel n non nul, on ait : $d_n = \alpha \left(\frac{1+\sqrt{5}}{4}\right)^n + \beta \left(\frac{1-\sqrt{5}}{4}\right)^n$.
- (d) En déduire que la série de terme général d_n converge et, en utilisant l'égalité du b), prouver l'égalité suivante :

$$\sum_{n=1}^{+\infty} d_n = 5.$$

11. On désigne par T la variable aléatoire qui prend pour valeur le rang du lancer à l'issue duquel l'un des joueurs est déclaré gagnant, si cela se produit, et la valeur 0 si aucun des joueurs n'est gagnant.

(a) Justifier, pour tout entier n supérieur ou égal à 2, l'égalité :

$$\mathbf{P}([T > n] \cup [T = 0]) = \frac{1}{2} + d_n$$

(b) En déduire, pour tout entier n supérieur ou égal à 3, l'égalité :

$$\mathbf{P}([T=n]) = \frac{1}{2} + d_{n-1} - d_n$$

- (c) Montrer que la probabilité que l'un des joueurs soit déclaré gagnant est égale à 1.
- 12. Calculer la probabilité que le joueur J' soit déclaré gagnant et conclure.
- 13. Si la configuration gagnante du joueur J avait été " pile, pile, face, pile, face " et la configuration gagnante du joueur J' avait été " face, face, pile, face, face, pile " , quelle aurait-été la conclusion?
- 14. Soit d et t les fonctions définies sur l'intervalle [0,1] par :

$$\forall x \in [0, 1], \quad d(x) = \sum_{n=1}^{+\infty} d_n x^n \quad \text{et} \quad t(x) = \sum_{n=1}^{+\infty} \mathbf{P}([T = n]) x^n$$

(a) Établir pour tout nombre réel x appartenant à l'intervalle [0,1] l'égalité suivante :

$$t(x) = (x-1)\left(d(x) + \frac{x^2}{2(2-x)}\right) + x$$

- (b) Exprimer pour tout nombre réel x appartenant à l'intervalle [0,1[, le quotient $\frac{t(x)-t(1)}{x-1}$ en fonction de d(x).
- (c) En s'inspirant de la question 7e de la Partie I, justifier l'égalité suivante :

$$\lim_{\substack{x \to 1 \\ x < 1}} d(x) = d(1).$$

(d) Montrer que la variable aléatoire T admet une espérance et préciser E(T).