$\begin{array}{c} \textbf{Devoir Maison n°3} \\ \textbf{Pour le } 8/11/22 \end{array}$

Conseils et consignes :

- Lisez l'énoncé du devoir avec attention.
- L'usage de la calculatrice ou de tout moyen de communication est interdit.
- Soignez la rédaction et la présentation. Seuls les résultats soulignés ou encadrés seront considérés comme des résultats et donc corrigés.
- Vous devez laisser de la place (une demi page) pour votre note et des commentaires en début de copie.
- Les exercices peuvent être traités dans l'ordre de votre choix.
- Écrire lisiblement les numéros des questions traitées et numéroter les pages.

EXERCICE 1.

Le but de cet exercice est l'étude de la fonction f définie par :

$$\forall x \in \mathbb{R}, \quad f(x) = e^x - e^{-x}$$

et la résolution d'une équation. On note C_f la courbe représentative de f.

- 1. (a) Donner le domaine de définition de f et étudier la parité de f. Que peut-on en déduire pour la courbe C_f ?
- 2. (a) Calculer f'(x) pour x réel.
 - (b) Construire le tableau de variation de f. (On admet ici que $\lim_{x\to +\infty} f(x) = +\infty$ et $\lim_{x\to -\infty} f(x) = -\infty$)
 - (c) Calculr f(0) et déterminer le signe de f(x) selon les valeurs du réel x.
 - (d) Déterminer l'équation de la tangente à la courbe C_f au point d'abscisse 0. On note cette droite T.
- 3. (a) Calculer la dérivée seconde de f et donnez le signe de f''(x).
 - (b) Construire sur un même schéma C_f et T.
- 4. Soit $n \in \mathbb{N}$, on considère dans cette question à l'équation (E_n) d'inconnue x: f(x) = n.
 - (a) Soit $n \in \mathbb{N}$. Montrer que l'équation $x^2 nx 1 = 0$ admet deux solutions réelles que l'on déterminera et dont on précisera les signes.
 - (b) A l'aide du changement de variable $t = e^x$, déterminer la solution u_n de (E_n) pour n entier naturel.

EXERCICE 2.

On considère la suite $(u_n)_{n\geq\mathbb{N}}$, définie par $u_0=3$, et pour tout $n\in\mathbb{N}$, $u_{n+1}=\frac{4u_n-2}{u_n+1}$.

- 1. Montrer par récurrence que $\forall n \in \mathbb{N}, u_n > 2$.
- 2. Montrer que la suite est décroissante.
- 3. Soit $(v_n)_{n\geq \mathbb{N}}$, définie par $v_n = \frac{u_n 2}{u_n 1}$.
 - (a) Montrer que la suite $(v_n)_{n\geq\mathbb{N}}$ est une suite géométrique dont on précisera la raison et le premier terme.
 - (b) Exprimer v_n puis u_n en fonction de n.

EXERCICE 3.

On considère les matrices $N=\begin{pmatrix} 7 & 2 & 1 \\ 3 & 6 & 1 \\ 9 & 6 & 7 \end{pmatrix}$ et $M=\frac{1}{20}N$. On pose $A=N-4I_3$ et $B=N-12I_3$.

- 1. Vérifier que AB = BA = 0. En déduire que NA = 12A et NB = 4B.
- 2. On considère les suites $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ définies par $a_0=\frac{1}{8},\ b_0=-\frac{1}{8}$ et, pour tout $n\in\mathbb{N}$, $a_{n+1} = 12a_n$ et $b_{n+1} = 4b_n$.
 - (a) Montrer par récurrence que, pour tout entier naturel n, on a $N^n = a_n A + b_n B$.
 - (b) De quel type sont les suites (a_n) et (b_n) ? Donner leur terme général en fonction de $n \in \mathbb{N}$.
 - (c) Montrer que $M^n = \frac{1}{8} \left(\frac{3}{5}\right)^n A \frac{1}{8} \left(\frac{1}{5}\right)^n B$ pour tout $n \in \mathbb{N}$.
- 3. Un particulier a acheté une poule. La poule pond chaque semaine entre 0 et 3 œufs. Si une semaine donnée, la poule ne pond pas d'œuf, son propriétaire décide de la vendre à la fin de la semaine (elle ne lui donnera donc plus d'œufs les semaines suivantes). On note, pour tout entier naturel nnon nul:
 - u_n la probabilité que la poule ne soit pas vendue la $n^{i i me}$ semaine et ponde 1 œuf;
 - d_n la probabilité que la poule ne soit pas vendue la $n^{i e me}$ semaine et ponde 2 œufs;
 - t_n la probabilité que la poule ne soit pas vendue la $n^{i e me}$ semaine et ponde 3 œufs.

On suppose que la première semaine, la poule pond un œuf puis, que pour tout entier naturel nnon nul, on a

$$\begin{cases} u_{n+1} &= \frac{7}{20}u_n + \frac{1}{10}d_n + \frac{1}{20}t_n \\ d_{n+1} &= \frac{3}{20}u_n + \frac{3}{10}d_n + \frac{1}{20}t_n \\ t_{n+1} &= \frac{9}{20}u_n + \frac{3}{10}d_n + \frac{7}{20}t_n \end{cases}$$

On note $X_n = \begin{pmatrix} u_n \\ d_n \\ t_n \end{pmatrix}$ pour tout $n \in \mathbb{N}^*$.

- (a) Justifier que, pour tout $n \in \mathbb{N}^*$, $X_{n+1} = MX_n$.
- (b) Montrer que, pour tout $n \in \mathbb{N}^*$, $X_n = M^{n-1}X_1$.
- (c) En déduire les termes généraux des trois suites (u_n) , (d_n) et (t_n) en fonction de $n \ge 1$.
- (d) Que représente le nombre $1 (u_n + d_n + t_n)$ pour tout $n \in \mathbb{N}^*$?
- (e) Vérifier que, pour tout entier $n \ge 1$, $u_n + 2d_n + 3t_n = \frac{9}{2} \left(\frac{3}{5}\right)^{n-1} \frac{7}{2} \left(\frac{1}{5}\right)^{n-1}$.
- (f) On définit la suite $(S_n)_{n\geq 1}$ par $S_n=\sum_{k=1}^n (u_k+2d_k+3t_k)$ pour tout $n\in\mathbb{N}^*$. Donner le terme général de (S_n) en fonction de $n \in \mathbb{N}^*$ et l'interpréter dans le contexte de l'énoncé.