Devoir Libre n°1

 $\overline{\text{Réponse le } 19/09}/24$

Exercice

On définit les fonctions ch et sh par

$$ch(x) = \frac{e^x + e^{-x}}{2},$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}.$

- 1. Exprimer la dérivées des fonctions chet shen fonction de chet sh. Montrer que, pour tout $x \in \mathbb{R}$, $\operatorname{ch}(x) > 0$. Calculer $\operatorname{sh}(0)$ et déterminer le signe de $\operatorname{sh}(x)$.
- 2. Soit u_0 un réel fixé strictement supérieur à 1 . Déduire de la question précédente qu'il existe un unique réel $\alpha \geq 0$ tel que $\operatorname{ch}(\alpha) = u_0$.
- 3. On considère le programme Python suivant

```
import numpy as np
3
  u0 = 3/2
  def ch(x):
            return ((np.exp(x)+np.exp(-x))/2)
  a=0
  b=2
  c = (a+b)/2
  while b-a>10**(-3):
            if (ch(a)-u0)*(ch(c)-u0)<0:
13
14
            else:
15
            c = (a+b)/2
16
  print(c)
```

- (a) Que fait ce programme? Comment s'appelle ce type de programme?
- (b) Pourquoi a-t-on pris b = 2?

On considère la suite (u_n) de premier terme u_0 et définie par la relation de récurrence

$$u_{n+1} = \sqrt{\frac{u_n + 1}{2}}.$$

- 4. (a) Vérifier que (u_n) est bien définie.
 - (b) Étudier les variations de $f: x \mapsto \sqrt{\frac{1+x}{2}}$.
 - (c) Résoudre

$$\sqrt{\frac{1+x}{2}} = x, \quad \sqrt{\frac{1+x}{2}} > x$$

- (d) En déduire le sens de variations de (u_n) .
- (e) Montrer que (u_n) converge et préciser sa limite.

5. Montrer que pour tout $x \in \mathbb{R}$,

$$2\left(\operatorname{ch}\left(\frac{x}{2}\right)\right)^2 - 1 = \operatorname{ch}(x)$$

6. En déduire, par récurrence, que pour tout entier n

$$u_n = \operatorname{ch}\left(\frac{\alpha}{2^n}\right)$$

7. Montrer que

$$\operatorname{ch}(x) - 1 = 2\left(\operatorname{sh}\left(\frac{x}{2}\right)\right)^2$$

- 8. Calculer sh'(0).
- 9. En déduire les équivalences suivantes

$$\operatorname{sh}(x) \underset{x \to 0}{\sim} x$$
, et $\operatorname{ch}(x) - 1 \underset{x \to 0}{\sim} \frac{x^2}{2}$.

10. En déduire un équivalent de $(u_n - 1)$ quand n tend vers $+\infty$.

Problème - Oral HEC 2016

On suppose que toutes les variables aléatoires qui interviennent dans cet exercice sont définies sur un même espace probabilisé (Ω, \mathcal{A}, P) .

- 1. Pour tout réel x on note |x| la partie entière de x.
 - (a) Soit un réel x fixé. Montrer que $\lim_{n \to +\infty} \frac{\lfloor nx \rfloor}{n} = x$.
 - (b) Pour tout réels x et y, établir l'équivalence $|y| \le x \Leftrightarrow y < |x| + 1$.
 - (c) Soit α et β deux réels vérifiant $0 \le \alpha \le \beta \le 1$. On note $N_n(\alpha, \beta)$ le nombre d'entiers k qui vérifient $\alpha < \frac{k}{n} \le \beta$. Exprimer $N_n(\alpha, \beta)$ en fonction de
- $\lfloor n\alpha \rfloor$ et de $\lfloor n\beta \rfloor$ 2. Pour tout entier naturel $n\geqslant 1$, on note Y_n la variable aléatoire discrète dont la loi est donnée par

$$\forall k \in [0, n-1]$$
 $P\left(Y_n = \frac{k}{n}\right) = \frac{1}{n}$

Soit Z une variable aléatoire suivant la loi uniforme sur l'intervalle [0; 1]. On définit Z_n par

$$Z_n = \frac{\lfloor nZ \rfloor}{n}$$

Soit α et β deux réels vérifiant $0 \le \alpha \le \beta \le 1$

- (a) Montrer que $\lim_{n \to +\infty} P(\alpha < Y_n \leq \beta) = \beta \alpha$.
- (b) Comparer les fonctions de répartition respectives de Y_n et Z_n . Conclusion