Devoir Libre n°4

Réponse le 18/11/24

Les questions précédées de (*) sont réservées aux cubes.

Exercice n°1

On note $E = \mathbb{R}_3[X]$ l'espace vectoriel polynômes à coefficients réels de degré inférieur ou égal à 3. Soit f l'application définie sur E qui associe à tout polynôme $P \in E$, le polynôme f(P) défini par :

$$f(P)(X) = -3XP(X) + X^2P'(X)$$
, où P' est la dérivée du polynôme P

- 1. (a) Rappeler la dimension de E.
 - (b) Montrer que f est un endomorphisme de E.
 - (c) Déterminer la matrice M de f dans 1a base canonique de E.
 - (d) (*) La matrice M est-elle inversible? Est-elle diagonalisable? Calculer pour tout $n \in \mathbb{N}^*$, M^n .
 - (e) Préciser le noyau Kerf de f ainsi qu'une base de Kerf.
 - (f) Déterminer 1'image Imf de f.
- 2. On note id_E et 0_E respectivement, l'endomorphisme identité et l'endomorphisme nul de E, et pour tout endomorphisme v de E, on pose $v^0=id_E$ et pour tout k de \mathbb{N}^* , $v^k=v\circ v^{k-1}$. Soit u et g deux endomorphîsmes de E tels que : $u^4=0_E$, $u^3\neq 0_E$ et $g=id_E+u+u^2+u^3$.
 - (a) Soit P un polynôme de E tel que $P \notin Ker(u^3)$. Montrer que la famille $(P, u(P), u^2(P), u^3(P))$ est une base de E.
 - (b) Montrer que g est un automorphisme de E. Déterminer l'automorphisme réciproque g^{-1} en fonction de u.
 - (c) Établir l'égalité $Ker\ u = Ker(g id_E)$
 - (d) (*) Montrer que 1 est la seule valeur propre de g.

Exercice n°2

Soit m un réel donné strictement positif et f l'endomorphisme de \mathbb{R}^3 dont la matrice M dans la base canonique de \mathbb{R}^3 est donnée par :

$$M = \left(\begin{array}{ccc} 0 & 1/m & 1/m^2 \\ m & 0 & 1/m \\ m^2 & m & 0 \end{array} \right)$$

On note I la matrice identité de $\mathcal{M}_3(\mathbb{R})$ et Id l'endomorphisme identité de \mathbb{R}^3 . Pour tout endomorphisme g de \mathbb{R}^3 on pose $g^0=\mathrm{Id}$ et pour tout k de \mathbb{N}^* , $g^k=g\circ g^{k-1}$.

- 1. Déterminer le noyau Ker(f) et l'image im(f) de l'endomorphisme f. La matrice M est-elle inversible?
- 2. (a) Montrer que la matrice M^2 est une combinaison linéaire de I et de M.
 - (b) Déterminer un polynôme annulateur non nul de la matrice M .
 - (c) (*) Déterminer les valeurs propres et les sous-espaces propres de M . Montrer que matrice M est-elle diagonalisable et déterminer les matrices R et D telles que $M = RDR^{-1}$.
- 3. À l'aide des résultats de la question 2.(c), indiquer une méthode, sans faire les calculs, qui permettrait d'obtenir pour tout n de \mathbb{N} , l'expression de M^n en fonction de n.
- 4. On pose : $p = \frac{1}{3}(f + \text{Id})$ et $q = -\frac{1}{3}(f 2\text{Id})$.
 - (a) Calculer $p \circ q$ et $q \circ p$, puis pour tout n de \mathbb{N} , p^n et q^n .
 - (b) En déduire pour tout n de \mathbb{N} , l'expression de f^n en fonction de p et q.
 - (c) Déterminer les deux suites réelles que pour tout n de \mathbb{N} , on ait : $M^n = a_n I + b_n M$.
 - (d) La formule précédente reste-t-elle valable si n appartient à \mathbb{Z} ?