Limite de Suites

EXERCICE 1

Calculer les limites en $+\infty$ des suites dont le terme général est donné par les expressions suivantes.

1.
$$n \ln \left(1 + \frac{1}{n}\right)$$

1.
$$n \ln \left(1 + \frac{1}{n}\right)$$
 3. $\sqrt{n} \ln \left(1 - \frac{1}{(n+2)^2}\right)$ 5. $\left(1 - \frac{1}{n}\right)^n$ 6. $\left(1 - \frac{1}{\sqrt{n}}\right)^{3n}$

$$5. \left(1 - \frac{1}{n}\right)^n$$

$$2. \ n^2 \ln \left(1 - \frac{1}{n} \right)$$

4.
$$n\left(e^{1/n} - \sqrt{1/n}\right)$$

$$6. \left(1 - \frac{1}{\sqrt{n}}\right)^{3n}$$

EXERCICE 2

Calculer les limites en $+\infty$ des suites dont le terme général est donné par les expressions suivantes.

$$1. \ln\left(\frac{n+1}{n^2+1}\right) \frac{1}{n}$$

3.
$$\left(1 + \frac{1}{n^2}\right)^n$$

5.
$$\frac{\sqrt{n^2+1}-\sqrt{n^2+n^2}}{\sqrt{n+1}-\sqrt{n}}$$

$$2. \left(1 + \frac{1}{n}\right)^{n}$$

4.
$$(1+n)^{\frac{n}{1+n^2}}$$

Séries

EXERCICE 3

Les séries suivantes sont-elles convergentes?

1.
$$\sum \frac{n}{n^4 + n^2 + 1}$$
 3. $\sum \frac{1}{n! + n^2}$ 5. $\sum \frac{n^{4/9}}{3^n}$ 6. $\sum e^{-\sqrt{\ln n}}$

2.
$$\sum \frac{1}{n + \sqrt{n} + 1}$$

$$3. \sum \frac{1}{n! + n^2}$$

5.
$$\sum \frac{n^{4/9}}{3^n}$$

4.
$$\sum \frac{e^n}{n^{100}}$$

6.
$$\sum_{n=0}^{\infty} e^{-\sqrt{\ln n}}$$

EXERCICE 4

Les séries suivantes sont-elles convergentes?

1.
$$\sum \frac{n}{(\ln n)^n}$$
 2.
$$\sum \frac{(n!)^2}{e^{n^2}}$$

2.
$$\sum \frac{(n!)^2}{n^{n^2}}$$

3.
$$\sum \frac{n^2}{(2n-1)!}$$

Suites et séries

EXERCICE 5

Calculer la somme des séries suivantes.

1.
$$\sum_{n \ge 2} \ln \left(\frac{1+n}{n-1} \right)$$

2.
$$\sum_{n>2} \frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}$$

$$3. \sum_{n=0}^{\infty} \frac{n}{3^n}$$

Dans chacun des cas écrire une fonction python textttfunction y =sommeapartielle(n) qui calcule la somme partielle de rang n.

EXERCICE 6

Calculer la somme des séries suivantes.

1.
$$u_n = \frac{1}{(3n+1)(3n+4)}$$
 $(n \ge 0)$

1.
$$\ln\left(\frac{n+1}{n^2+1}\right)\frac{1}{n}$$
2. $\left(1+\frac{1}{n}\right)^n$
4. $(1+n)^{\frac{n}{1+n^2}}$
5. $\frac{\sqrt{n^2+1}-\sqrt{n^2+n}}{\sqrt{n+1}-\sqrt{n}}$
2. $\sum_{n\geqslant 1}\ln\left(1+\frac{2}{n(n+3)}\right)$

EXERCICE 7 — Convergence absolue

Les séries suivantes sont-elles absolument convergentes?

1.
$$\sum \frac{(-1)^n}{(2n+1)^3}$$

2.
$$\sum \frac{(-1)^{n-1}}{(3n-1)}$$

1.
$$\sum \frac{(-1)^n}{(2n+1)^3}$$

2. $\sum \frac{(-1)^{n-1}}{(3n-1)}$
3. $1 - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{7}} + \dots$
4. $\frac{1}{8} - \frac{2}{12} + \frac{3}{16} - \frac{1}{16} - \frac{1}{16}$

4.
$$\frac{1}{8} - \frac{2}{12} + \frac{3}{16} - \frac{4}{20} + \dots$$

$$5. \sum \frac{(-1)^n \ln}{n}$$

$$6. \sum \frac{(-1)^r}{\ln n}$$

EXERCICE 8 — Convergence absolue

Les séries suivantes sont-elles absolument convergentes?

$$1. \sum \left(\frac{1}{n} - 1\right)^r$$

$$2. \sum \left(\frac{1-n}{1+n}\right)^n$$

3.
$$\sum \frac{(-1)^n}{\ln n + (-1)^n}$$

4.
$$\sum \frac{(-1)^n}{n + (-1)^n}$$

1.
$$\sum \left(\frac{1}{n}-1\right)^n$$
 4. $\sum \frac{(-1)^n}{n+(-1)^n}$ 7. $\sum (-1)^n \frac{2^n}{n^2}$ 8. $\sum \frac{(-1)^n}{e^n}$ 8. $\sum \frac{(-1)^n}{e^n}$ 9. $\sum \frac{(-1)^n}{n!}$

6.
$$\sum \frac{(-1)^n}{n^{1/n}}$$

$$7. \sum (-1)^n \frac{2^n}{n}$$

$$8. \sum \frac{(-1)^n r}{e^n}$$

9.
$$\sum \frac{(-1)^n}{n!}$$

ECG 2 Suites et séries TD - Chapitre 6

EXERCICE 9

Calculer la somme des séries dont le terme général est

1.
$$\frac{n^2 - n}{(n+3)!}$$

$$2. \ \frac{(n+2)(n+1)}{2^{n+3}}$$

Calcul de séries liées aux probabilités

EXERCICE 10

On suppose que $X \hookrightarrow \mathcal{G}(p)$ avec $p \in]0; 1[$.

- 1. Rappeler le support de X ainsi que la loi de X.
- 2. Montrer que X admet une espérance et la calculer
- 3. Montrer que X(X-1) admet une espérance et la calculer
- 4. En déduire que X admet une variance et la calculer

EXERCICE 11

On suppose que $X \hookrightarrow \mathcal{P}(\lambda)$ avec $p \in \mathbb{R}_+^*$.

- 1. Rappeler le support de X ainsi que la loi de X.
- 2. Montrer que X admet une espérance et la calculer
- 3. Montrer que X(X-1) admet une espérance et la calculer
- 4. En déduire que X admet une variance et la calculer

EXERCICE 12

On suppose que X est une variable aléatoire telle que

$$\forall n \in \mathbb{N} \qquad P(X=n) = (n+1)p^2(1-p)^n$$

ou $p \in]0; 1[.$

- 1. Montrer que cette formule définie une loi de probabilité.
- 2. Montrer que X admet une espérance et la **calculer**

Vers les concours

Suites définies par récurrence

EXERCICE 13

On considère la suite récurrente $u_{n+1} = f(u_n)$ avec $f(x) = x^2 + \frac{3}{16}$ et $u_0 \ge 0$.

- 1. Étudier f et le signe de f(x) x. Quelles sont les limites possible de (u_n) ?
- 2. On suppose $u_0 \in [0; 1/4]$. Montrer que pour tout $u_n \in [0; 1/4]$ puis que (u_n) est croissante.
- 3. Quelle est la nature de (u_n) (si elle est convergente, préciser sa limite)?
- 4. On suppose $u_0 \in [\frac{1}{4}; \frac{3}{4}]$. Montrer que (u_n) est décroissante et minorée. Quelle est la nature de (u_n) (si elle est convergente, préciser sa limite)?
- 5. On suppose $u_0 > 3/4$. Montrer que (u_n) est croissante. Quelle est la nature de (u_n) (si elle est convergente, préciser sa limite)?

EXERCICE 14

On note f la fonction définie sur]0; $+\infty[$ par $f(x) = 1 + \ln x$. Soit u la suite définie par son premier terme $u_0 \ge 1$ et par la relation de récurrence $u_{n+1} = f(u_n)$.

- 1. Démontrer que la suite est bien définie et qu'elle est minorée par 1.
- 2. Étudier le signe de f(x) x sur $[1; +\infty[$.
- 3. Étudier la monotonie de u.
- 4. En déduire que (u_n) est convergente, et donner sa limite.

EXERCICE 15 — EML 1996

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^{2x} + 1}$

- 1. (a) Montrer que f est paire.
 - (b) Etudier les variations de f.
 - (c) Montrer qu'il existe un unique réel ℓ tel que $f(\ell) = \ell$. Justifier : $0 \le \ell \le \frac{1}{2}$ (on donne f(1/2) < 1/2)
 - (d) Montrer que pour tout réel $x: |f'(x)| \le f(x) \le \frac{1}{2}$
- 2. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$ $u_{n+1} = f(u_n)$

- (a) Montrer que, pour tout $n \in \mathbb{N}$ $u_n \in [0, \frac{1}{2}]$
- (b) Montrer que, pour tout $n \in \mathbb{N}$:

$$|u_{n+1} - \ell| \le \frac{1}{2} |u_n - \ell|$$
 puis $|u_n - \ell| \le \frac{1}{2^{n+1}}$

- (c) En déduire que la suite (u_n) converge vers ℓ .
- (d) Ecrire un programme Scilab permettant d'obtenir une valeur approchée de ℓ à 10^{-3} près.

EXERCICE 16

Soit $u=(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=-2$ et la relation de récurrence :

$$\forall n \in \mathbb{N} \quad u_{n+1} = \frac{2u_n}{3 - u_n}$$

- 1. Écrire une fonction function y=suite(n) qui calcule le terme n de cette suite.
- 2. Méthode 1 : Utilisation d'une suite auxiliaire : Considérons la suite auxiliaire $v=(v_n)_{n\in\mathbb{N}}$ définie pour $n\in\mathbb{N}$, par $v_n=\frac{u_n}{1-u_n}$
 - (a) Démontrez que v est une suite géométrique.
 - (b) En déduire l'expression de u_n en fonction de n.
 - (c) Montrez que u est convergente et précisez sa limite.
- 3. Méthode 2 : Utilisation d'une inégalité :
 - (a) Montrez que la suite u vérifie

$$\forall n \in \mathbb{N}, |u_{n+1}| \leqslant \frac{2}{3}|u_n|$$

- (b) En déduire que u converge et déterminez sa limite.
- (c) Déterminez un rang n_0 à partir duquel tous les termes de la suite sont dans l'intervalle ouvert $]-10^{-2},10^{-2}[$.

EXERCICE 17

[suite définie par récurrence et série!] Soit u la suite définie par

$$u_0 \in]0; 1[$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2.$

- 1. Montrer que pour tout entier n on a $u_n \in]0; 1[$.
- 2. Montrer que la suite u est décroissante et étudier sa limite.
- 3. Montrer que la série $\sum_{n} u_n^2$ est convergente et calculer sa somme.
- 4. En calculant les sommes partielles, montrer que la série $\sum \ln \left(\frac{u_{n+1}}{u_n} \right)$ est divergente.
- 5. Trouver un équivalent de $\ln\left(\frac{u_{n+1}}{u_n}\right)$ et en déduire que la nature de la série $\sum u_n$.

Suites implicites

EXERCICE 18 — D'après EDHEC 1997

Pour tout entier naturel n non nul, on note f_n la fonction définie par :

$$\forall x \in \mathbb{R}_+^*, \ f_n(x) = x - n. \ln(x)$$

- 1. (a) Etudier cette fonction et dresser son tableau de variations.
 - (b) En déduire, lorsque n est supérieur ou égal à 3, l'existence de deux réels u_n et v_n solutions de l'équation $f_n(x) = 0$ et vérifiants $0 < u_n < n < v_n$.
- 2. Etude de la suite $(u_n)_{n\geq 3}$.
 - (a) Montrer que $\forall n \geq 3, 1 < u_n < e$.
 - (b) Montrer que $f_n(u_{n+1}) = \ln(u_{n+1})$, puis en conclure que (u_n) est décroissante.
 - (c) En déduire que $(u_n)_{n\geqslant 3}$ converge et montrer, en encadrant $\ln(u_n)$, que $\lim_{n\to +\infty} u_n=1$.
 - (d) Montrer que $\lim_{n\to+\infty} \frac{\ln(u_n)}{u_n-1} = 1$; en déduire que $u_n-1 \sim \frac{1}{n}$.

EXERCICE 19 — D'après EDHEC 2008

Pour tout entier naturel n non nul, on définit la fonction f, par :

$$\forall x \in \mathbb{R}, \ f_n(x) = \frac{1}{1 + e^x} + n \ x$$

- 1. (a) Déterminer, pour tout réel x, $f'_n(x)$ et f''(x).
 - (b) En déduire que la fonction f_n est strictement croissante sur $\mathbb R$
- 2. (a) Montrer que l'équation $f_n(x) = 0$ possède une seule solution sur \mathbb{R} , notée u_n .
 - (b) Montrer que l'on a : $\forall n \in \mathbb{N}^*$, $\frac{-1}{n} < u_n < 0$.
 - (c) En déduire la limite de la suite (u_n)
 - (d) En revenant à la définition de u_n , montrer que $u_n \sim \frac{-1}{n \to +\infty} \frac{-1}{2n}$.

EXERCICE 20

Soit $n \in \mathbb{N}$, Montrer que l'équation $xe^x = n$ possède dans \mathbb{R}_+ , une unique solution x_n . Étudier la limite de $(x_n)_{n \in \mathbb{N}}$.

Suites d'intégrales

EXERCICE 21

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 x^n e^{-x} dx$.

- 1. Justifier que la suite $(I_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Étudier les variations de la suite $(I_n)_{n\in\mathbb{N}}$
- 3. Démontrer que la suite $(I_n)_{n\in\mathbb{N}}$ converge et déterminer la valeur de sa limite
- 4. Démontrer : $\forall n \in \mathbb{N}, I_{n+1} = (n+1)I_n e^{-1}$.
- 5. En déduire : $\forall n \in \mathbb{N}, 0 \leq I_n \frac{e^{-1}}{n+1} \leq \frac{1}{(n+1)(n+2)}$. Trouver alors un équivalent simple de I_n quand n tend vers $+\infty$.
- 6. Écrire une fonction Python prenant en argument d'entrée un entier naturel n et renvoyant la valeur de I_n .

EXERCICE 22

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{x^n}{1+x^n} dx$ et $J_n = nI_n$.

- 1. Déterminer $\lim_{n\to+\infty} I_n$
- 2. Démontrer que pour tout $n \in \mathbb{N}$, $J_n = \ln(2) \int_0^1 \ln(1+x^n) dx$.
- 3. Établir : $\lim_{n \to +\infty} \int_0^1 \ln(1+x^n) dx = 0.$
- 4. En déduire la limite de $(J_n)_{n\in\mathbb{N}}$ puis un équivalent de I_n lorsque n tend vers $+\infty$

Divers

EXERCICE 23

Soit $u = (u_n)_{n \in \mathbb{N}^*}$ la suite définie par

$$\forall n \in \mathbb{N}^*$$
 $u_n = \sqrt{n + \sqrt{n - 1 + \sqrt{\dots + \sqrt{2 + \sqrt{1}}}}}$

- 1. Écrire une fonction y=suite(n) qui calcule le terme n de cette suite.
- 2. Montrer que $\lim u_n = +\infty$
- 3. Trouver une relation simple entre u_n et u_{n+1} .

- 4. Montrer que pour $n \in \mathbb{N}^*$, $u_n \leq n$ et que $u_n = o(n)$
- 5. Trouver un équivalent simple de (u_n) .
- 6. Trouver la limite de $u_n \sqrt{n}$

EXERCICE 24

On pose pour n entier strictement plus grand que 1

$$S_n = \sum_{k=1}^{n} (-1)^k \frac{1}{k}$$

- 1. Montrer que $(S_{2n})_n$ et $(S_{2n+1})_n$ sont adjacentes.
- 2. En déduire la convergence de la suite $(S_n)_{n\in\mathbb{N}}$.
- 3. La série converge-t'elle absolument?

EXERCICE 25

- 1. Critères de comparaison sur les séries à terme général positif.
- 2. Soit $x \in [0; +\infty)$. Établir la convergence de la série $\sum_{k \ge 0} \frac{1}{2^k + x}$. On notera f(x) sa somme.
- 3. Calculer f(0).
- 4. Étudier les variations de la fonction f ainsi définie sur $[0; +\infty[$
- 5. Établir: $\forall x \in \left[0; +\infty\right[, f(2x) = \frac{1}{2}f(x) + \frac{1}{2x+1}\right]$
- 6. Déduire des deux questions précédentes que f possède une limite en $+\infty$ et la déterminer.
 - 7. item Montrer que pour tous réels positifs x et y, on a : $|f(x) f(y)| \le \frac{4}{3}|x y|$.

En déduire que f est continue sur $[0; +\infty[$.

EXERCICE 26 — Somme de la série harmonique alternée

On pose, pour tout entier $n \ge 1$,

$$T_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}, \quad \text{et} \quad I_n = \int_0^1 \frac{(1-t)^n}{(1+t)^{n+1}} \, \mathrm{d}t.$$

$$I_{n+1} = \frac{1}{n+1} - I_n$$

- 2. Calculer I_0 et en déduire I_1 .
- 3. En déduire que, pour tout entier $n \ge 1, T_n = \ln(2) + (-1)^{n+1} I_n$.
- 4. Montrer que, pour tout $n \ge 1$,
- 5. Conclure.

$$0 \leqslant I_n \leqslant \frac{1}{n+1}$$

EXERCICE 27 — D'après EML 2015

On considère l'application $f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f(x) = x^3 e^x$.

- 1. Montrer que la série $\sum_{n\geq 1} \frac{1}{f(n)}$ converge. On note S sa somme.
- 2. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \left| S - \sum_{k=1}^n \frac{1}{f(n)} \right| \leqslant \frac{1}{(e-1)e^n}.$$

3. En déduire une fonction en Python qui calcule une valeur approchée de S à 10^{-4} près.

EXERCICE 28

- 1. Rappeler la formule de Taylor-Young, à l'ordre 2 au voisinage de 0.
- 2. Soit $f: t \mapsto \ln(1+t) t$.
 - (a) Donner le domaine de définition de f puis un équivalent de f(t) au voisinage de 0 .
 - (b) En déduire la nature de la série $\sum_{n>1} f\left(\frac{1}{n}\right)$.
- 3. On considère un nombre réel a > 0 et une suite à termes strictement positifs $(u_n)_{n \ge 1}$. On introduit alors les suites (w_n) et (ℓ_n) définies, pour tout $n \in \mathbb{N}^*$, par

$$w_n = \frac{u_{n+1}}{u_n} - 1 + \frac{a}{n}, \quad \ell_n = \ln(n^a u_n).$$

On suppose que la série de terme général w_n est absolument convergente.

(a) Montrer la convergence des séries $\sum_{n\geqslant 1} w_n^2$ et $\sum_{n\geqslant 1} \frac{w_n}{n}$.

(b) Vérifier que

Suites et séries

$$\ell_{n+1} - \ell_n = f\left(w_n - \frac{a}{n}\right) + w_n + af\left(\frac{1}{n}\right).$$

(c) Préciser

$$\lim_{n \to +\infty} w_n - \frac{a}{n}$$

puis la nature de la série $\sum_{n\geqslant 1} f\left(w_n - \frac{a}{n}\right)$.

- (d) En déduire la nature de la série $\sum_{n\geq 1} (\ell_{n+1}-\ell_n)$.
- (e) Que peut-on en déduire à propos de la suite (ℓ_n) ?
- (f) Conclure qu'il existe une constante A > 0 telle que

$$u_n \underset{n \to +\infty}{\sim} \frac{A}{n^a}.$$

4. Application. On considère la suite (u_n) définie, pour $n \ge 1$ par

$$u_n = \prod_{k=1}^n \frac{2k}{2k+1}.$$

- (a) Expliciter u_1, u_2, u_3 .
- (b) Déterminer la nature de la série $\sum_{n\geq 1} u_n$.

EXERCICE 29

On cherche l'ensemble des couples $(a,b) \in (\mathbb{R}_+^*)^2$ tels que la série $\sum \frac{a^k}{1+b^k}$ soit convergente.

- 1. Montrer que si 0 < a < b, alors la série est convergente.
- 2. On considère $0 < b \leq a$.
 - (a) Traiter les cas b < 1 et b = 1.
 - (b) Que se passe-t-il pour b > 1?

TD - Chapitre 6

EXERCICE 30 — D'après ECRICOME 1997

Soit α est un réel strictement positif. Pour tout $n \in \mathbb{N}$ on pose

$$u_n(\alpha) = \frac{n!}{\prod_{k=0}^n (\alpha+k)}.$$

- 1. (a) Montrer que la suite (u_n) est monotone et convergente. On note $\ell(\alpha)$ sa limite.
 - (b) Que peut-on déduire pour la série de terme général $(u_n(\alpha) u_{n+1}(\alpha))$?
 - (c) On suppose que $\ell(\alpha)$ est non nulle. Démontrer que

$$u_n(\alpha) - u_{n+1}(\alpha) \underset{n \to +\infty}{\sim} \frac{\alpha \ell(\alpha)}{n}.$$

- (d) Déduire de ce qui précède que $\ell(\alpha) = 0$.
- 2. Dans cette question : $\alpha \in]0,1]$.
 - (a) Montrer que

$$\forall n \in \mathbb{N}, u_n(\alpha) \geqslant \frac{1}{n+\alpha}.$$

(b) Quelle est la nature de la série de terme général $u_n(\alpha)$?

EXERCICE 31

On considère la fonction f définie sur [0;1] par $f(x) = 2xe^x$.

- 1. Montrer que f réalise une bijection de [0;1] sur un ensemble que l'on déterminera. On note f^{-1} sa bijection réciproque. Donner les tableaux de variations de f et de f^{-1} .
- 2. Vérifier qu'il existe un unique nombre $\alpha \in [0; 1]$ tel que $\alpha e^{\alpha} = 1$. Montrer que $\alpha \neq 0$.
- 3. Montrer, par récurrence, que la suite (u_n) définie par

$$\begin{cases} u_0 = \alpha \\ u_{n+1} = f^{-1}(u_n), \quad n \geqslant 0. \end{cases}$$

est bien définie (i.e. que u_n existe pour tout entier n) et que $u_n \in]0;1]$.

- 4. Montrer que, pour tout $x \in [0;1], f(x) x \ge 0$ et que l'égalité ne se produit que pour x=0.
- 5. En déduire la monotonie de la suite (u_n) , puis qu'elle converge. On précisera sa limite.
- 6. On s'intéresse alors à la série de terme général u_n dont on note (S_n) la suite des sommes partielles.
 - (a) Montrer que, pour tout entier $n, u_{n+1} = \frac{1}{2}u_n e^{-u_{n+1}}$.

(b) En déduire, par récurrence, que pour tout entier n,

$$u_n = \frac{e^{-S_n}}{2^n}.$$

- (c) À l'aide du critère de comparaison, montrer que la série $\sum u_n$ converge. On note L sa somme. Montrer que $\alpha \leq L \leq 2$.
- (d) Montrer finalement que

$$u_n \sim \frac{e^{-L}}{2^n}, \quad n \to +\infty.$$

EXERCICE 32 — Série alternée.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de limite nulle. Pour $N\in\mathbb{N}$, on pose $S_N=\sum_{n=0}^N (-1)^n u_n.$
 - (a) Justifier que pour tout $n \in \mathbb{N}, u_n \geq 0$.
 - (b) Démontrer que les suites $(S_{2N})_{n\in\mathbb{N}}$ et $(S_{2N+1})_{n\in\mathbb{N}}$ sont adjacentes.
 - (c) En déduire que la série $\sum_{n=0}^{\infty} (-1)^n u_n$ est convergente.
- 2. Établir la convergence de la série $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}}$.
- 3. Donner un équivalent simple de $\frac{(-1)^n}{\sqrt{n} + (-1)^n}$ quand n tend vers $+\infty$.
- 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui converge vers 0 . Établir :

$$\frac{1}{1+u_n} = 1 - u_n + u_n^2 + \mathop{o}_{n \to +\infty} \left(u_n^2 \right)$$

En déduire :

$$\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \frac{(-1)^n}{n\sqrt{n}} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n\sqrt{n}}\right)$$

- 5. Étudier alors la nature de la série $\sum_{n\geqslant 1}\frac{(-1)^n}{\sqrt{n}+(-1)^n}.$
- 6. Qu'a permis de mettre en évidence cet exercice?

TD - Chapitre 6

EXERCICE 33

Partie I - Étude d'une suite récurrente

On considère une suite (u_n) définie par son premier terme $u_0>0$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n^2}{n+1}.$$

On introduit également la suite (v_n) définie, pour tout $n \in \mathbb{N}$, par

$$v_n = \frac{\ln(u_n)}{2^n}.$$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $u_n > 0$. En déduire que la suite (v_n) est bien définie.
 - (2) Trouver un réel $q \in]0;1[$ tel que

$$\frac{\ln(n)}{2^n} = o(q^n), \quad n \to +\infty.$$

En déduire que la série $\sum_{k\geq 1} \frac{\ln(k)}{2^k}$ converge. Dans toute la suite, on note

$$\sigma = -\sum_{k=1}^{+\infty} \frac{\ln(k)}{2^k}$$

- 2. (a) Pour tout entier $k \ge 1$, exprimer $v_k v_{k-1}$ en fonction de k.
 - (b) Déterminer alors la nature de la série $\sum_{k\geq 1} (v_k v_{k-1})$.
 - (c) En déduire la convergence de la suite (v_n) et exprimer sa limite ℓ en fonction de u_0 et σ .
 - 3. On suppose dans cette question que $u_0 \neq e^{-\sigma}$. En distinguant les cas $u_0 < e^{-\sigma}$ et $u_0 > e^{-\sigma}$, déterminer le signe de ℓ .
 - (b) En déduire la limite de la suite $(\ln (u_n))$ puis le comportement en $+\infty$ de u_n .
 - 4. On suppose dans cette question que $u_0 = e^{-\sigma}$. Vérifier que, pour tout $n \in \mathbb{N}$,

$$v_n = \sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k}$$

(b) Montrer alors que, pour tout $n \in \mathbb{N}$,

$$\ln\left(u_n\right) \geqslant \frac{\ln(n+1)}{2}.$$

(c) Déterminer alors $\lim_{n\to +\infty} u_n$.

Partie II - Approximation de σ

- 5. (a) Montrer que, pour tout $x \in \mathbb{R}_+^*, \ln(x) \leq x$.
 - (b) Soient $m, n \in \mathbb{N}^*$, avec $m \ge n + 1$. Déterminer

$$\lim_{m\to +\infty} \left(\frac{1}{2}\right)^{n+1} \times \sum_{k=1}^{m-n} k\left(\frac{1}{2}\right)^{k-1} \text{ et } \lim_{m\to +\infty} n\left(\frac{1}{2}\right)^n \times \sum_{k=1}^{m-n} \left(\frac{1}{2}\right)^k.$$

(c) En déduire que

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k} \leqslant \frac{n+2}{2^n}.$$

6. Montrer alors que

$$\forall n \in \mathbb{N}^*, \quad \left| \sigma - \left(-\sum_{k=1}^n \frac{\ln(k)}{2^k} \right) \right| \leqslant \frac{n+2}{2^n}.$$

7. Écrire alors une fonction Python approx(eps) prenant en argument un réel eps et renvoyant une approximation de σ à eps près.