Couples de variables aléatoires discrètes 2

Dans tout la suite les variables aléatoires discrètes sont définies sur un même espace probabilisé (Ω, \mathcal{A}, P)

I. Fonctions de variables aléatoires discrètes

Proposition 1.1

Soit X et Y deux variables aléatoires. Soit f une fonction à valeurs réelles telle que f(x,y) soit défini pour tout $x \in X(\Omega)$ et pour tout $y \in Y(\Omega)$.

Alors f(X,Y) est une variable aléatoire discrète définie sur Ω .

Exercice 1

Dans chacun des cas suivants expliciter qu'elle la fonction f

- $\max(X, Y)$ est une vad on pose f(., .) =
- *X* + *Y*
- $\min(X, Y)$ est une vad on pose f(.,.) =
- XY

Théorème 1.2 — Théorème de transfert

Soit (X, Y) un couple de variables aléatoires discrètes et g(x, y) une fonction définie sur l'ensemble $X(\Omega) \times Y(\Omega)$. Alors

$$E(g(X,Y)) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)}$$

sous réserve que cette dernière série converge absolument.

Méthode:

• Calculer la loi d'un maximum :

Pour calculer la loi de $\max(X, Y)$ on peut remarquer que pour tout réel x

$$[\max(X,Y) \leqslant x] = [X \leqslant x] \cap [Y \leqslant x]$$

Si de plus X et Y sont **indépendantes** alors $P(\max(X,Y) \leq x) = P(X \leq x) P(Y \leq x)$. Ce qui permet de calculer la fonction de répartition.

• Calculer la loi d'un minimum :

Pour calculer la loi de $\min(X, Y)$ on peut remarquer que pour tout réel x

$$[\min(X,Y) > x] = [X > x] \cap [Y > x]$$

Si de plus X et Y sont **indépendantes** alors $P(\min(X,Y) > x) = P(X > x) P(Y > x)$. Et en utilisant $P(\Box \leq x) = 1 - P(\Box > x)$ on retrouve la fonction de répartition.

Exercice 2

Soit X et Y deux variables aléatoires discrètes indépendantes, suivant la loi uniforme sur [1, n]. Calculer la loi du maximum et du minimum de X et Y

عر

Méthode:

Pour calculer la loi d'une somme X + Y:

• On remarque que pour tout entier naturel

$$[X+Y=n] = \bigcup_{k=0}^{n} \left([X=k] \cap [Y=n-k] \right) = \bigcup_{k=0}^{n} \left([X=n-k] \cap [Y=k] \right) = \bigcup_{\substack{0 \leqslant i \leqslant n \\ 0 \leqslant j \leqslant n \\ i+j=n}} \left([X=i] \cap [Y=j] \right)$$

- Ces événements entre parenthèses sont incompatibles deux-à-deux.
- Si de plus X et Y sont **indépendantes** alors

$$P(X + Y = n) = \sum_{k=0}^{n} P(X = k) P(Y = n - k)$$

Attention:

Il faut adapter les indices des \sum précédentes au support de X et Y

Lemme 1.3 — Égalité de Vandermonde

Soit m,n et k trois entiers naturels alors

$$\sum_{j=0}^{k} \binom{m}{j} \binom{n}{k-j} = \binom{n+m}{k}$$

 $D\'{e}monstration.$

Théorème 1.4

• Somme de deux lois binomiales « avec le même p » : Soit n_1 et n_2 deux entiers naturels et $p \in]0,1[$. Soit $X \hookrightarrow \mathcal{B}(n_1,p)$ et $Y \hookrightarrow \mathcal{B}(n_2,p)$. On suppose de plus que X et Y sont indépendantes. Alors

$$X + Y \hookrightarrow \mathcal{B}(n_1 + n_2, p)$$

• Somme de deux lois de Poisson : Soit λ_1 et λ_2 deux réels strictement positifs. Soit $X \hookrightarrow \mathcal{P}(\lambda_1)$ et $Y \hookrightarrow \mathcal{P}(\lambda_2)$. On suppose de plus que X et Y sont indépendantes. Alors

$$X + Y \hookrightarrow \mathcal{P}(\lambda_1 + \lambda_2)$$

• Soit $X_1, X_2, ..., X_n$ des variables aléatoires indépendantes suivant une loi de Bernoulli $\mathcal{B}(p)$, alors

$$\sum_{i=1}^{n} X_i \hookrightarrow$$

Démonstration. À savoir faire

II. Covariance d'un couple de variables aléatoires

II. 1 Indépendance et conséquences

Définition 2.1 — Rappel : indépendance de deux variables aléatoires discrètes

Soit X et Y deux variables aléatoires discrètes définies sur un même espace. probabilisé (Ω, \mathcal{A}, P) . On dit que X et Y sont indépendantes si et seulement si

$$\forall x \in X(\Omega) \quad \forall y \in Y(\Omega) \qquad P([X = x] \cap [Y = y]) = P([X = x]) P([Y = y])$$

Proposition 2.2 — Rappel espérance d'une somme : linéarité de l'espérance

Soit X et Y deux variables aléatoires discrètes ^a admettant une espérance alors X + Y admet une espérance et

$$E(X+Y) = E(X) + E(Y)$$

Plus généralement si α et β sont des réels $\alpha X + \beta Y$ admet une espérance et

$$E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$$

a. non nécessairement indépendantes

Proposition 2.3 — Espérance d'un produit

Soit X et Y deux variables aléatoires discrètes **indépendantes** admettant une espérance telle que XY admet une espérance alors

$$E(XY) = E(X)E(Y)$$

Attention:

Quelle sont les différences entre les hypothèses de ces deux théorèmes?

 $D\acute{e}monstration.$

II. 2 Covariance

Définition 2.4 — Covariance

Soit X et Y deux variables aléatoires discrètes admettant un moment d'ordre 2. On note alors

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

Exercice 3

Soit X et Y deux variables aléatoires dont la loi du couple est

X/Y	1	2	3	loi de X
1	1/6	1/6	1/6	1/2
2	1/6	1/6	1/6	1/2
loi de Y	1/3	1/3	1/3	1

Calculer la covariance.

Proposition 2.5 — Propriétés de la covariance

Soit X, Y et Z trois variables aléatoires admettant des moments d'ordre 2. Soit α et β deux réels.

- 1. Symétrie : Cov(X, Y) = Cov(Y, X).
- 2. La variance comme covariance Cov(X, X) = V(X)
- 3. Linéarité à gauche $Cov(\alpha X + \beta Y, Z) = ...$
- 4. Linéarité à droite $Cov(X, \alpha Y + \beta Z) = ...$
- 5. Les deux dernières propriétés peuvent être regroupées en bilinéarité.

Exercice 4 — Calculs classiques

X et Y sont deux variables aléatoires discrètes admettant un moment d'ordre 2. Simplifier les expressions suivantes

1.
$$Cov(X + Y, X + Y)$$

2.
$$\operatorname{Cov}(X+Y,X-Y)$$

3.
$$Cov(X - Y, X - Y)$$

Proposition 2.6 — Variable presque certaine

Soit c une constante (ou une variable aléatoire presque certaine égale à c). Soit X et Y deux variables aléatoires discrètes admettant un moment d'ordre 2.

•
$$\operatorname{Cov}(X, c) = 0$$

•
$$Cov(X + c, Y) = Cov(X, Y)$$

Théorème 2.7 — Formule de Huygens

Soit X et Y deux variables aléatoires discrètes admettant un moment d'ordre 2. Alors

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

 $D\acute{e}monstration.$

Proposition 2.8 — Lien entre covariance et indépendance

Soit X et Y deux variables aléatoires discrètes admettant un moment d'ordre 2. Si X et Y sont indépendantes alors

$$Cov(X, Y) = 0$$

Attention:

La réciproque est fausse!!

Exercice 5

Soit X et Y deux variables aléatoires dont la loi du couple est donnée ci-dessous. Calculer la covariance de (X,Y).

X/Y	-1	1	loi de X
0	1/3	1/3	
1	0	1/3	
loi de Y			1

Proposition 2.9 — Variance d'une somme

Soit X et Y deux variables aléatoires discrètes admettant un moment d'ordre 2. Soit α et β deux réels

$$V(X+Y) = V(X) + V(Y) + 2\operatorname{Cov}(X,Y)$$

$$V(\alpha X + \beta Y) = \alpha^2 V(X) + \beta^2 V(Y) + 2\alpha \beta \text{Cov}(X, Y)$$

Remarques:

 $\mathbf{R1}$ – On sait que si X et Y sont indépendantes, alors $\mathrm{Cov}\left(X,Y\right)=0$, ainsi :

 $\mathbf{R2}$ — On peut généraliser ce résultat. Si $X_1,...,X_n$ sont n variables aléatoires indépendantes :

Exercice 6

Soient X et Y deux variables aléatoires discrètes admettant un moment d'ordre 2.

- 1. Soit $t \in \mathbb{R}$. Montrer que $V(X + tY) = V(X) + 2\operatorname{cov}(X, Y)t + V(Y)t^2$.
- 2. On note $P: t \mapsto V(X+tY)$. Justifier que, pour tout $t \in \mathbb{R}, P(t) \geq 0$. En déduire, à l'aide d'une considération sur un discriminant, que

$$\left| \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)} \right| \le 1$$

Remarque:

La deuxième question permet d'énoncer le résultat suivant, appelé Inégalité de Cauchy-Schwarz :

Définition 2.10 — Coefficient de corrélation linéaire

Soit X et Y deux variables aléatoires discrètes admettant un moment d'ordre 2 et un écart-type non nul. On définit le coefficient de corrélation linéaire

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Où σ_X et σ_X sont les écarts types de X et Y.

Proposition 2.11 — Cauchy-Schwarz

Soit X et Y deux variable aléatoire admettant un moment d'ordre 2 alors

$$|\rho(X,Y)| \leq 1$$

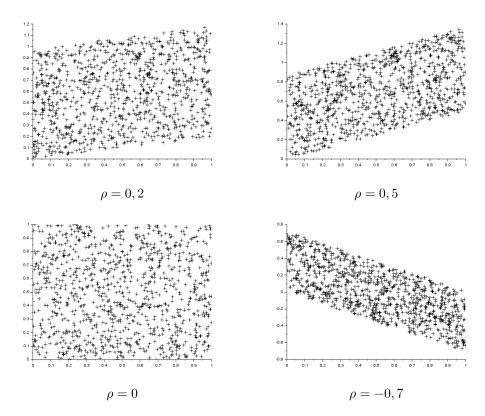
De plus il y' a égalité dans l'inégalité précédente si et seulement si il existe a et b deux constantes telles que

$$X = aY + b$$
 ou $Y = aX + b$

Exemple:

Soit X et Y deux variables indépendantes de loi uniforme sur [0,1]. On pose $Z = \rho X + \sqrt{1-\rho^2}Y$, $\rho \in]-1,1[$.

- 1. On calcule le coefficient de corrélation $\rho(X, Z)$.
- 2. Voici, selon les valeurs différentes valeurs de ρ , le nuage de points (X, Z).



Remarque:

Autrement dit, le coefficient de corrélation linéaire de X et Y est un réel compris entre -1 et $1:-1 \le \rho_{X,Y} \le 1$

- Il est égal à 1 dans le cas où l'une des variables est fonction affine croissante de l'autre variable.
- Il est égal à -1 dans le cas où l'une des variables est fonction affine décroissante de l'autre variable.
- Les valeurs intermédiaires renseignent sur le degré de dépendance linéaire entre les deux variables.
- Plus le coefficient $\rho_{X,Y}$ est proche des valeurs extrêmes -1 et 1, plus la corrélation entre les variables est forte.
- Deux variables aléatoires dont la covariance est nulle (et donc le coefficient de corrélation linéaire est nul) sont dites non corrélées.
- Une corrélation positive $(\rho_{X,Y} > 0)$ indique que les variables X et Y varient dans le même sens.
- Une corrélation négative $(\rho_{X,Y} < 0)$ indique que les variables X et Y varient en sens inverse.

III. Suites de variables aléatoires discrètes.

Dans cette partie toutes les variables aléatoires sont discrètes et définies sur un même espace probabilisé (Ω, \mathcal{A}, P)

III. 1 Indépendance

Définition 3.1 — indépendance mutuelle de n variables aléatoires discrètes

Soit X_1, \ldots, X_n n variables aléatoires. On dit qu'elles sont mutuellement indépendantes si et seulement si

$$\forall x_1 \in X_1(\Omega), \ \forall$$
 $P\left(\bigcap [X_i = x_i]\right) =$

Définition 3.2

Soit $(X_i)_{i\in\mathbb{N}}$ une suite infinie de variables aléatoires discrètes. On dit que ces variables aléatoires sont mutuellement indépendantes si et seulement si pour tout partie $I \subset \mathbb{N}$ finie les variables $(X_i)_{i\in I}$ sont mutuellement indépendantes au sens précédent.

Proposition 3.3 — Lemme des coalitions

- Si X et Y sont deux variables aléatoires discrètes indépendante et si f et g sont deux fonctions numériques définies respectivement sur $X(\Omega)$ et $Y(\Omega)$ alors f(X) et g(Y) sont indépendantes.
- Soient X_1, \ldots, X_n mutuellement indépendantes et soit $p \in [2, n-1]$. Alors toute variable aléatoire fonction des variables X_1, \cdots, X_p est indépendante de toute variable aléatoire fonction des variables X_{p+1}, \cdots, X_n .

Exemple:

Si X_1 X_2 et X_3 sont mutuellement indépendantes alors X_1 est indépendante de $\max(X_2, X_3)$

Proposition 3.4 — Espérance et variance d'une somme

Soit $X_1, X_2, \dots X_n, n$ variables aléatoires qui admettent des espérances. Alors $(X_1 + X_2 + \dots + X_n)$ admet une espérance et

$$E(X_1 + X_2 + \dots + X_n) =$$

Si de plus ces variables aléatoires sont **mutuellement indépendantes** et admettent des moment d'ordre 2, alors $X_1 + X_2 + \cdots + X_n$ admet un moment d'ordre 2 et :

$$V(X_1 + X_2 + \dots + X_n) =$$

Proposition 3.5 — variance d'une somme : cas général

Soit $X_1, X_2, \ldots X_n, n$ variables aléatoires qui admettent des moment d'ordre 2

$$V\left(\sum_{k=1}^{n} X_k\right) = \sum_{k=1}^{n} V(X_k) + 2\sum_{1 \leqslant i < j \leqslant n} \operatorname{Cov}\left(X_i, X_j\right)$$

Et on sait que la somme $\sum_{1 \leqslant i < j \leqslant n} \text{Cov}(X_i, X_j)$ comporte $\binom{n}{2} = \frac{n(n-1)}{2}$ termes.

On peut également généraliser les résultats de stabilité vus précédemment :

• Si $X_1, X_2, ..., X_n$ sont n variables indépendantes suivant une loi de Poisson, $X_i \hookrightarrow \mathcal{P}(\lambda_i)$, alors

$$\sum_{i=1}^{n} X_i \hookrightarrow$$

• Si $X_1, X_2, ..., X_n$ sont n variables indépendantes suivant une loi Binomiale, $X_i \hookrightarrow \mathcal{B}(n_i, p)$, alors

$$\sum_{i=1}^{n} X_i \hookrightarrow$$