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Exercice n°1 - EML 2019
Partie A : Premier exemple

1. A est triangulaire supérieure donc ses valeurs propres se lisent sur sa diagonale, ainsi Sp(A) =
{

1
2 , 1, 2

}
.

A est une matrice carrée d’ordre 3 admettant trois valeurs propres distinctes, donc A est diagonalisable .
Enfin 0 n’est pas valeur propre de A donc A est inversible .

2. On cherche les sous-espaces propres de A . Soit X =

x
y
z

 ∈ M3,1(R) .

X ∈ E1/2(A) ⇐⇒
(

A − 1
2I3

)
X = 0 ⇐⇒


x/2 − y + z = 0 ,
0 = 0 ,
3z/2 = 0

⇐⇒
{

x = 2y ,
z = 0 .

⇐⇒ X =

2y
y
0

 , y ∈ R .

Ainsi E1/2(A) = Vect

2
1
0

 .

X ∈ E1(A) ⇐⇒
(

A − I3

)
X = 0 ⇐⇒


−y + z = 0 ,
−y/2 = 0 ,
z = 0

⇐⇒
{

y = 0 ,
z = 0 .

⇐⇒ X =

x
0
0

 , x ∈ R .

Ainsi E1(A) = Vect

1
0
0

 .
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X ∈ E2(A) ⇐⇒
(

A − 2I3

)
X = 0 ⇐⇒


−x − y + z = 0 ,
−3y/2 = 0 ,
0 = 0

⇐⇒
{

z = x ,
y = 0 .

⇐⇒ X =

x
0
x

 , x ∈ R .

Ainsi E2(A) = Vect

1
0
1

 .

Finalement on a A = PDP −1 avec D =

1/2 0 0
0 1 0
0 0 2

 et P =

2 1 1
1 0 0
0 0 1

 .

La matrice D est diagonale de coefficients diagonaux tous non-nuls, elle est donc inversible et son inverse

est la matrice diagonale constituée des inverses des coefficients diagonaux de D : D−1 =

2 0 0
0 1 0
0 0 1/2

 .

3. Le calcul donne Q2 = I3 et QDQ = D−1 .
4. Remarquons d’abord que d’après la question précédente, Q.Q = I3 , c’est-à-dire que Q est inversible et

Q−1 = Q .
Par ailleurs A = PDP −1 donc A−1 = (PDP −1)−1 = PD−1P −1 , or D−1 = QDQ d’après la question
précédente, donc

A−1 = PQDQP −1 = PQDQ−1P −1 .

Enfin D = P −1AP donc

A−1 = PQ(P −1AP )Q−1P −1 = PQP −1APQ−1P −1 = (PQP −1)A(PQP −1)−1 .

Ainsi si l’on note R = PQP −1 , on a A−1 = RAR−1 , c’est-à-dire que A et A−1 sont semblables .

Partie B : Deuxième exemple

5. On a f(1, 0, 0) = (1, 0, 0) , f(0, 1, 0) = (0, 0, 1) et f(0, 0, 1) = (0, −1, 2) donc M =

1 0 0
0 0 −1
0 1 2

 .

M est inversible si et seulement si (L2 ↔ L3)

1 0 0
0 1 2
0 0 −1

 est inversible, ce qui est le cas puisqu’il s’agit

d’une matrice triangulaire de coefficients diagonaux tous non-nuls. Ainsi M est inversible .

6. (a) Soit X =

x
y
z

 ∈ M3,1(R) . On résout le système linéaire (M − I3)X = 0 :

(M − I3)X = 0 ⇐⇒


0 = 0 ,
−y − z = 0 ,
y + z = 0 .

⇐⇒ z = −y ⇐⇒ X =

 x
y

−y

 , (x, y) ∈ R2 .

Ce système possède au moins une solution non-nulle donc 1 est valeur propre de M . De plus E1(M) =

Vect

1
0
0

 ,

 0
1

−1

 .
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Finalement puisque M représente f dans la base canonique de R3 , 1 est valeur propre de f et
E1(f) = Vect(u1, u2) . Les vecteurs u1 et u2 étant non-colinéaires, ils forment bien une base de E1(f) .

(b) On cherche u3 sous la forme u3 = (x, y, z) .

f(u3) − u3 = u2 ⇐⇒ (M − I3)

x
y
z

 =

 0
1

−1

 ⇐⇒


0 = 0 ,
−y − z = 1 ,
y + z = −1 .

⇐⇒ z = −y − 1 .

Ainsi on peut par exemple choisir x = 0 , y = 0 , z = −1 et u3 = (0, 0, −1) convient .

(c) Soit (a, b, c) ∈ R3 tel que au1 + bu2 + cu3 = (0, 0, 0) . Alors
a + 0.b + 0.c = 0 ,
0.a + b + 0.c = 0 ,
0.a − b − c = 0 ,

d’où a = b = c = 0 . Ainsi la famille (u1, u2, u3) est libre. De plus elle est constituée de trois vecteurs
dans R3 , c’est donc une base de R3 .

7. (a) On a montré précédemment que (u1, u2) est une base de E1(f) , donc f(u1) = u1 et f(u2) = u2 . Enfin
on a choisi u3 tel que f(u3) − u3 = u2 , c’est-à-dire f(u3) = u2 + u3 . Ainsi la matrice de f dans la base

(u1, u2, u3) est M1 =

1 0 0
0 1 1
0 0 1

 .

Déterminons maintenant M2 : on a f(u1) = u1 , f(−u2) = −f(u2) = −u2 par linéarité de f et

f(u3) = −(−u2) + u3 , donc M2 =

1 0 0
0 1 −1
0 0 1

 .

(b) M1 et M2 représentent le même endomorphisme f dans deux bases différentes, elles sont donc semblables
(en effet si on note T la matrice de passage de B1 à B2 alors M2 = T −1M1T d’après la formule de
changement de base).
Le calcul donne M1M2 = I3 .

8. On vient de montrer que M1M2 = I3 , de plus M1 est une matrice carrée, donc M1 est inversible et M−1
1 =

M2 .
M et M2 représentent le même endomorphisme f donc M et M2 sont semblables. Par ailleurs M−1 et M−1

1
représentent le même endomorphisme f−1 donc M−1 et M−1

1 sont semblables. Autrement dit M−1 et M2
sont semblables puisque M−1

1 = M2 .
Finalement on a montré que M et M−1 sont toutes deux semblables à la même matrice M2 . Ainsi par
transitivité M et M−1 sont semblables .

Partie C : Troisième exemple

9. T est triangulaire supérieure de coefficients diagonaux tous non-nuls, donc T est inversible .
Montrons par l’absurde que T n’est pas diagonalisable. Supposons T diagonalisable. T étant triangulaire,
ses valeurs propres se lisent sur sa diagonale, donc 1 est l’unique valeur propre de T . Ainsi puisque T est

diagonalisable, il existe une matrice inversible P telle que T = PDP −1 , où D =

1 0 0
0 1 0
0 0 1

 = I3 . Ainsi

T = PI3P −1 = PP −1 = I3 , ce qui contredit la définition de T .
Ainsi T n’est pas diagonalisable .

10. (a) Le calcul donne N3 = 03 . Ainsi,

(I3 + N)(I3 − N + N2) = I3 − N + N2 + N − N2 + N3 = I3 + N3 = I3 .
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(b) On vient de montrer que (I3 + N)(I3 − N + N2) = I3 , de plus I3 + N est une matrice carrée, donc
I3 + N = T est inversible et T −1 = I3 − N + N2 .

11. (a) On vérifie par le calcul que N2 ̸= 03 , donc g2 n’est pas l’endomorphisme nul, donc il existe u ∈ R3 tel
que g2(u) ̸= 0 . En revanche N3 = 03 donc g3 est l’endomorphisme nul, en particulier g3(u) = 0 .

(b) Soit (a, b, c) ∈ R3 tel que ag2(u) + bg(u) + cu = 0 . Alors en appliquant g2 et par linéarité de g2 , on
obtient ag4(u) + bg3(u) + cg2(u) = g2(0) = 0 , autrement dit puisque g3(u) = g4(u) = 0 : cg2(u) = 0 .
Or g2(u) ̸= 0 donc c = 0 .
L’équation initiale se récrit donc : ag2(u) + bg(u) = 0 . En appliquant g qui est linéaire, on obtient
alors : ag3(u) + bg2(u) = 0 , c’est-à-dire bg2(u) = 0 , or g2(u) ̸= 0 , donc b = 0 .
Finalement il reste ag2(u) = 0 , d’où a = 0 . On a donc montré que a = b = c = 0 , et donc la famille
B3 est libre. Il s’agit par ailleurs d’une famille de trois vecteurs de R3 , ainsi B3 est une base de R3 .

(c) On a g
(
g2(u)

)
= g3(u) = 0 , g

(
g(u)

)
= g2(u) , et g(u) = g(u) donc la matrice de g dans la base B3 est :

M3 =

0 1 0
0 0 1
0 0 0

 .

(d) Le calcul donne N2 − N =

0 1 0
0 0 1
0 0 0

 = M3 .

Or M3 et N sont semblables car elles représentent le même endomorphisme g dans des bases différentes.
Ainsi N2 − N et N sont semblables .

12. D’après la question précédente il existe une matrice U inversible telle que N = U−1(N2 − N)U . En remar-
quant que I3 = U−1U , on peut alors écrire

T = I3 + N = U−1U + U−1(N2 − N)U = U−1(I3 + N2 − N)U .

Or d’après la question 10b), T −1 = I3+N2−N , donc T = U−1T −1U , autrement dit T et T −1 sont semblables .
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Exercice n°2 - Ecricome 2016
Partie A

1. (a) g0 est C∞ sur R+ comme quotient de deux fonctions C∞ avec un dénominateur jamais nul. Pour
toutx ≥ 0

g′
0(x) = −2

(1 + x)3

Donc g0 est strictement décroissante sur [0, +∞[.
lim

x→+∞
g0(x) = lim

x→+∞

1
(1 + x)2 = 0 .

L’équation de la tangente en 0 est y = g′
0(0)(x − 0) + g0(0) soit y = −2x + 1.

Rq : En fait, il s’agit d’une demi-tangente, car g0 n’est pas définie sur ] − ∞, 0[.
(b) On obtient la représentation graphique suivante :

2. (a) Soit n ≥ 1.

• La fonction x 7→ ln(1 + x) est de classe C∞ sur [0, +∞[ donc, par produit, x 7→ (ln(1 + x))n.
• La fonction x 7→ (1 + x)2 est de classe C∞ sur [0, +∞[ et ne s’y annule jamais.

Par quotient gn est C∞ sur [0, +∞[ .

∀x ∈ [0, +∞[, g′
n(x) =

n
1

1 + x
(ln(1 + x))n−1(1 + x)2 − 2(1 + x)(ln(1 + x))n

(1 + x)4

∀x ∈ [0, +∞[, g′
n(x) =

≥0︷ ︸︸ ︷
(1 + x)(ln(1 + x))n−1(n − 2 ln(1 + x))

(1 + x)4︸ ︷︷ ︸
≥0

D’où g′
n(x) ≥ 0 ⇔ n − 2 ln(1 + x) ≥ 0 ⇔ n ≥ 2 ln(1 + x) ⇔ 1 + x ≤ en/2 ⇔ x ≤ en/2 − 1.

Comme n/2 > 0, en/2 > 1 et donc en/2 − 1 ∈ [0, +∞[.
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On a donc :

x

g′
n(x)

gn)

0 en/2 − 1 +∞

− 0 +

00

MnMn

00

• Mn = gn(en/2 − 1)

• gn(0) = (ln(1))n

12 = 0

(b) On pose y = 1 + x. Alors lim
x→+∞

y = +∞ et lim
y→+∞

(ln y)n

y2 = 0 par croissances comparées. Donc par
composition

lim
x→+∞

gn(x) = 0

(c) D’après le tableau de variations de gn, gn admet un maximum sur [0, +∞[ en en/2 − 1 qui vaut :

Mn = gn(en/2 − 1) = (ln(en/2))n

(en/2)2 = (n/2)n

en
=
( n

2e

)n
.

ln(Mn) = n ln
( n

2e

)
tend vers +∞ quand n tend vers +∞ donc : lim

n→+∞
Mn = +∞.

(d) Pour tout n ≥ 1,
gn(x)
1/x3/2 ∼ (ln(1 + x))n

x1/2 →
x→+∞

0 (toujours par croissances comparées),

donc gn(x) = o
x→+∞

(
1

x3/2

)
.

Partie B
3. Soit A > 0. ∫ A

0
g0(t)dt =

∫ A

0

1
(1 + t)2 dt =

[
− 1

1 + t

]A

0
= − 1

1 + A
+ 1 →

A→+∞
1,

donc I0 =
∫ +∞

0
g0(t)dt converge et vaut 1.

4. Soit n ≥ 1.

• gn et t 7→ 1
t3/2 sont continues et positives sur [1, +∞[.

• gn(t) = o
t→+∞

(
1

t3/2

)
d’après 1d.

• Or,
∫ +∞

1

1
t3/2 dt converge (Riemann et 3/2 > 1), donc, d’après le théorème de comparaison des intégrales

de fonctions positives,
∫ +∞

1
gn(t)dt converge aussi.

• Enfin, comme gn est continue sur [0, 1],
∫ 1

0
gn(t)dt existe.

Par suite, In =
∫ +∞

0
gn(t)dt converge.

Lycée Internationnal de Valbonne ECG 2 6 / 14



5. Soit A > 0.

Posons u(t) = (ln(1 + t))n+1, u′(t) = (n + 1)
1 + t

(ln(1 + t))n, v′(t) = 1
(1 + t)2 , v(t) = − 1

1 + t
.

Comme u et v sont de classe C1 sur [0, A], on peut intégrer par parties et on a :∫ A

0
gn+1(t)dt =

[
−(ln(1 + t))n+1

1 + t

]A

0
+
∫ A

0

(n + 1)
1 + t

(ln(1 + t))n 1
1 + t

dt

= −(ln(1 + A))n+1

1 + A
+ (n + 1)

∫ A

0
gn(t)dt.

Or, lim
A→+∞

∫ A

0
gn+1(t)dt = In+1, lim

A→+∞

∫ A

0
gn(t)dt = In (car In et In+1 convergent)

et lim
A→+∞

−(ln(1 + A))n+1

1 + A
= 0 (par croissances comparées),

donc, en passant à la limite dans l’égalité précédente, on obtient bien :

In+1 = (n + 1)In.

6. Montrons par récurrence que, pour tout n ∈ N, In = n!
• Initialisation : On a I0 = 1 et 0! = 1, donc l’initialisation est vérifiée.
• Hérédité : Soit n ∈ N et supposons que In = n!.

Alors In+1 = (n + 1)In =
hdr

(n + 1)n! = (n + 1)!

• Conclusion : D’où, par récurrence, pour tout n ∈ N, In = n!.

Partie C
7. • fn est positive sur R.

• fn est continue sur R sauf éventuellement en 0.

•
∫ +∞

0
fn(t)dt = 1

n!

∫ +∞

0
gn(t)dt converge et vaut 1

n!n! = 1.

fn peut donc bien être considérée comme une densité de probabilité.
8. Soit n ≥ 1.

• t 7→ tfn(t) et t 7→ 1
t

sont continues et positives sur [1, +∞[.

• 1/t

tfn(t) = n!(1 + t)2

t2(ln(1 + t))n
∼ n!

(ln(1 + t))n
→

t→+∞
0, donc 1

t
= o

t→+∞
(tfn(t)) .

• Or,
∫ +∞

1

1
t
dt diverge (Riemann de paramètre 1 ≤ 1), donc, d’après le théorème de comparaison des

intégrales de fonctions positives,
∫ +∞

1
tfn(t)dt diverge aussi.

Donc
∫ +∞

0
tfn(t)dt diverge, donc Xn n’admet pas d’espérance.

9. Pour tout n ∈ N, pour tout x < 0, Fn(x) =
∫ x

−∞
fn(t)dt =

∫ x

−∞
0dt = 0 .

10. Pour tout x ≥ 0, F0(x) =
∫ x

−∞
fn(t)dt =

∫ 0

−∞
0dt +

∫ x

0

1
(1 + t)2 dt = 1 − 1

1 + x
= x

1 + x
(cf calculs

précédents)
11. En reprenant les calculs faits lors de l’IPP (en remplaçant n par k − 1 et A par x, on obtient :

Fk(x) = 1
k!

∫ x

0
gk(t)dt = 1

k!

(
−(ln(1 + x))k

1 + x
+ k

∫ x

0
gk−1(t)dt

)
= − 1

k!
(ln(1 + x))k

1 + x
+ 1

(k − 1)!

∫ x

0
gk−1(t)dt = − 1

k!
(ln(1 + x))k

1 + x
+ Fk−1(x),
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et on a donc bien :

Fk(x) − Fk−1(x) = − 1
k!

(ln(1 + x))k

1 + x
.

12. En sommant l’égalité précédente pour k = 1..n, on obtient :
n∑

k=1
Fk(x) − Fk−1(x) = −

n∑
k=1

1
k!

(ln(1 + x))k

1 + x
,

et donc, en télescopant à gauche de l’égalité :

Fn(x) − F0(x) = −
n∑

k=1

1
k!

(ln(1 + x))k

1 + x
,

et donc

Fn(x) = F0(x) −
n∑

k=1

1
k!

(ln(1 + x))k

1 + x
= 1 −

n∑
k=0

1
k!

(ln(1 + x))k

1 + x
.

13. • Pour tout x < 0, lim
n→+∞

Fn(x) = lim
n→+∞

0 = 0.

• Pour tout x ≥ 0,

Fn(x) = 1 −
n∑

k=0

1
k!

(ln(1 + x))k

1 + x
= 1 − 1

1 + x

n∑
k=0

(ln(1 + x))k

k!

→
n→+∞

1 − 1
1 + x

+∞∑
k=0

(ln(1 + x))k

k!

(série exponentielle de paramètre ln(1 + x), donc convergente)

→
n→+∞

1 − 1
1 + x

exp(ln(1 + x)) = 1 − 1 + x

1 + x
= 0.

14. Posons G : x 7→ lim
n→+∞

Fn(x).
G est nulle sur R.
G ne varie pas de 0 à 1 en croissant donc G n’est pas une fonction de répartition.
Donc Xn ne converge pas en loi vers une variable X.

15. (a) On a Xn(Ω) = R+, donc (1+Xn)(Ω) = [1, +∞[, donc Yn = ln(1+Xn) est bien définie et Yn(Ω) = R+.

(b) D’après le théorème de transfert, Yn admet une espérance
si et seulement si

∫
X(Ω)

ln(1 + x)fn(x)dx converge absolument.

Or, ∫
X(Ω)

ln(1 + x)fn(x)dx =
∫ +∞

0

1
n!

(ln(1 + x))n+1

(1 + x)2 dx

= 1
n!

∫ +∞

0
gn+1(x)dx

= 1
n!In+1 = (n + 1)!

n! = n + 1

Par suite, d’après le théorème de transfert, Yn = ln(1 + Xn) admet une espérance et
E(Yn) = n + 1
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(c) De même, d’après le théorème de transfert, Y 2
n admet une espérance si et seulement si

∫
X(Ω)

(ln(1 +

x))2fn(x)dx converge absolument.
Or, ∫

X(Ω)
(ln(1 + x))2fn(x)dx =

∫ +∞

0

1
n!

(ln(1 + x))n+2

(1 + x)2 dx

= 1
n!

∫ +∞

0
gn+2(x)dx

= (n + 2)!
n! = (n + 2)(n + 1)

Par suite, d’après le théorème de transfert, Y 2
n = (ln(1 + Xn))2 admet une espérance et E(Y 2

n ) =
(n + 2)(n + 1), donc Yn admet une variance et, d’après Huygens Koenig,
V (Yn) = E(Y 2

n ) − (E(Yn))2 = (n + 2)(n + 1) − (n + 1)2 = n + 1
V (Yn) = n + 1

(d) Pour tout x ∈ R,

Hn(x) = P (Yn ≤ x) = P (ln(1 + Xn) ≤ x) = P (1 + Xn ≤ ex) = P (Xn ≤ ex − 1) = Fn(ex − 1).

(e) Hn est continue sur R et de classe C1 sur R sauf éventuellement en un nombre fini de points comme
composée de Fn (qui est continue sur R et de classe C1 sur R sauf éventuellement en un nombre fini
de point (fonction de répartition de Xn)) et de x 7→ ex − 1 (qui est C1 sur R).
Yn est donc une variable à densité et une densité de Yn est

hn : x 7→ exfn(ex − 1) =

 0 si ex − 1 < 0

ex 1
n!

(ln(1 + ex − 1))n

(1 + ex − 1)2 si ex − 1 ≥ 0 =

 0 si x < 0
xne−x

n! si x ≥ 0

(f) h0 : x 7→
{

0 si x < 0
e−x si x ≥ 0 On reconnaît la densité d’une loi E(1), donc Y0 ↪→ E(1).

D’après le théorème de transfert, Y0 admet un moment d’ordre k (et donc Y k
0 = (ln(1 + X0))k une

espérance) si et seulement si
∫

X0(Ω)
(ln(1 + x))kf0(x)dx converge absolument.

Or, ∫
X0(Ω)

(ln(1 + x))kf0(x)dx =
∫ +∞

0
(ln(1 + x))kf0(x)dx (car X0(Ω) = R+)

=
∫ +∞

0
(ln(1 + x))k 1

(1 + x)2 dx (définition de f0)

= Ik

donc
∫

X0(Ω)
(ln(1 + x))kf0(x)dx converge absolument et, d’après le théorème de transfert, Y k

0 admet

une espérance et E(Y k
0 ) = Ik = k!. On peut conclure :

Y0 admet un moment d’ordre k, qui vaut k!

Lycée Internationnal de Valbonne ECG 2 9 / 14



Exercice n°3 - ESCP 1996
Partie A

1. La loi de chaque Ti s’écrit sous forme de tableau :

a −1 0 1
P(Ti = a) q r p

D’où
E(Ti) = (−1)q + 0 · r + 1 · p = p − q , E(T 2

i ) = p + q.

La variance vaut alors, d’après la formule de Koenig-Huygens :

Var(Ti) = E(T 2
i ) − E(Ti)2 = p + q − (p − q)2 .

2. Le temps d’attente du premier succès (obtenir une boule blanche) dans une suite d’épreuves de Bernoulli de
paramètre p suit une loi géométrique :

X1 ∼ G(p).

On rappelle les moments de la loi géométrique :

E(X1) = 1
p

, Var(X1) = 1 − p

p2 .

3. Simulation de (X1, X2) (Python) ? :

import numpy as np
import numpy.random as rd

def simul_X1_X2(p):
x1 = 1
while rd.rand() > p: # on n’a pas encore de blanche

x1 += 1
x2 = x1 + 1 # au moins un tirage de plus
while rd.rand() > p: # attendre la deuxième blanche

x2 += 1
return [x1, x2]

4. (a) Pour i ∈ N∗ et j ⩾ i + 1, on écrit [
Tk = 1

]
= 1{k ?ème tirage blanc}.

Alors, par indépendance des tirages,

P
(
X1 = i ∩ X2 = j

)
= P

(
i−1⋂
k=1

[
Tk ̸= 1

]
∩ [Ti = 1] ∩

j−1⋂
k=i+1

[
Tk ̸= 1

]
∩ [Tj = 1]

)

=
(

i−1∏
k=1

P(Tk ̸= 1)
)

P(Ti = 1)
(

j−1∏
k=i+1

P(Tk ̸= 1)
)

P(Tj = 1)

= (1 − p) i−1 p (1 − p) j−i−1 p = (1 − p) j−2 p2 .

Si j ⩽ i la probabilité vaut 0 (la deuxième blanche ne peut pas arriver avant la première).
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(b) En sommant sur tous les
i

possibles (formule des probabilités totales) on obtient, pour tout j ⩾ 2,

P(X2 = j) =
∞∑

i=1
P
(
X1 = i ∩ X2 = j

)
=

j−1∑
i=1

(1 − p) j−2p2 = (j − 1)(1 − p) j−2p2.

(c) La série ∑
j⩾2

j(j − 1)(1 − p)j−2

est une série géométrique dérivée d’ordre 2. Comme 1 − p ∈] − 1, 1[, elle converge. Ainsi

X2

possède une espérance finie et, en utilisant la formule de la somme d’une série géométrique dérivée,

E(X2) = 2
p

.

5. On pose U2 = X2 − X1 (nombre d’essais entre les deux premières blanches).

(a) Pour tout j ⩾ 1,

P(U2 = j) =
∞∑

i=1
P
(
X1 = i ∩ U2 = j

)
=

∞∑
i=1

P
(
X1 = i ∩ X2 = i + j

)
=

∞∑
i=1

(1 − p) i+j−2p2 = (1 − p) j−1

p
.

Mais (1 − p) j−1

p
= P(X1 = j), donc U2 suit la même loi géométrique que X1. On en déduit

E(U2) = 1
p

, Var(U2) = 1 − p

p2 .

(b) Vérifions l’indépendance de X1 et U2 ? :

P
(
X1 = i ∩ U2 = j

)
= P

(
X1 = i ∩ X2 = i + j

)
= (1 − p) i+j−2p2

=
[
(1 − p) i−1p

] [
(1 − p) j−1p

]
= P(X1 = i) P(U2 = j).

Ainsi X1 et U2 sont indépendantes.
(c) Le programme suivant (Python) simule 10000 couples (X1, U2) puis calcule la covariance empirique ? :

import numpy as np, numpy.random as rd

def simulate(N,p):
xs, us = [], []
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for _ in range(N):
# première blanche
i = 1
while rd.rand() > p:

i += 1
# deuxième blanche
j = i + 1
while rd.rand() > p:

j += 1
xs.append(i)
us.append(j-i)

return np.cov(xs, us, bias=True)[0,1]

print(simulate(10000, 0.3)) # doit être très proche de 0

Parce que les deux variables sont indépendantes, la covariance théorique est exactement 0.
(d) Puisque X2 = X1 + U2 et que X1 et U2 sont indépendantes,

Var(X2) = Var(X1) + Var(U2) = 2 1 − p

p2 .

(e) En développant Var(U2) = Var(X2 − X1) on obtient

Var(U2) = Var(X2) + Var(X1) − 2 Cov(X1, X2),

d’où
Cov(X1, X2) = 1 − p

p2 .

Cette covariance n’est pas nulle ? ; les variables X1 et X2 ne sont donc pas indépendantes.

Partie B
On note W le nombre de boules rouges obtenues avant l’apparition de la première boule blanche.

6. Fixons i ⩾ 1 et conditionnons par l’événement [X1 = i]. Parmi les i−1 tirages précédant la première blanche,
chaque tirage est soit rouge, soit noir. La probabilité conditionnelle d’obtenir une rouge à chaque essai vaut

r

q + r
. Ainsi, conditionnellement à [X1 = i], la variable W suit une loi binomiale

W | [X1 = i] ∼ B
(

i − 1,
r

q + r

)
,

c’est-à-dire

P
(
W = k | X1 = i

)
=
(

i − 1
k

)(
r

q + r

)k ( q

q + r

)i−1−k

, 0 ⩽ k ⩽ i − 1.

7. En appliquant la formule des probabilités totales,

P(W = k) =
∞∑

i=1
P
(
X1 = i

)
P
(
W = k | X1 = i

)
=

∞∑
i=k+1

(1 − p) i−1p

(
i − 1

k

)(
r

q + r

)k ( q

q + r

)i−1−k

= p

(
r

q + r

)k ∞∑
i=k+1

(
i − 1

k

)[
(1 − p) q

q+r

] i−1−k
.
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8. (
i

k

)
= i!

k!(i − k)! = i × (i − 1)!
k × (k − 1)!(i − 1 − (k − 1))! = i

k

(
i − 1
k − 1

)
9. En permutant les deux sommes (justifié par convergence absolue) on obtient

E(W ) =
∞∑

k=0
k P(W = k)

= p
∞∑

i=1
(1 − p) i−1

i−1∑
k=0

k

(
i − 1

k

)(
r

q + r

)k ( q

q + r

)i−1−k

.

La somme intérieure est l’espérance d’une loi binomiale B(i − 1,
r

q + r
), donc vaut (i − 1) r

q + r
. Ainsi

E(W ) = p
r

q + r

∞∑
i=1

(i − 1)(1 − p) i−1

= p
r

q + r

1 − p

p2 (car
∑
i⩾1

(i − 1)a i−1 = 1
(1 − a)2 − 1)

= r

p(q + r) .

En remarquant que
q + r = 1 − p

, on retrouve la forme plus compacte
E(W ) = r

p
.

Partie C
On note, pour tout entier n ⩾ 1,

Sn = T1 + T2 + · · · + Tn.

10. Le premier terme vaut S1 = T1. D’après le tableau de la question(1) on a

a −1 0 1
P(T1 = a) q r p

Ainsi
E(S1) = E(T1) = p − q, Var(S1) = Var(T1) = p + q − (p − q)2.

11. Par linéarité de l’espérance,

E(Sn) =
n∑

i=1
E(Ti) = n (p − q).

Les variables Ti étant mutuellement indépendantes,

Var(Sn) =
n∑

i=1
Var(Ti) = n

[
p + q − (p − q)2].

12. Soit t > 0 et, pour tout n ∈ N∗, on pose

Vn = tSn = t
∑n

i=1 Ti .
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(a) Loi et espérance de V1.
On a V1 = tT1 , et T1(Ω) = {−1, 0, 1} donc la loi de V1 se résume dans ce tableau :

a 1/t 1 t

P(V1 = a) q r p

L’espérance de V1 vaut alors

E(V1) = 1
t

q + 1 · r + t · p = q + rt + t2

t
.

(b) Espérance de Vn.
En utilisant l’indépendance des variables (Ti)i⩾1, on a

E(Vn) = E
(

t
∑

Ti

)
= E

(
n∏

i=1
tTi

)

=
n∏

i=1
E(tTi) (lemme des coalitions / indépendance)

=
(
E(V1)

)n
.

Or E(V1) = q + rt + t2

t
, d’où

E(Vn) =
(

q + rt + t2

t

)n

.
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