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Correction du concours Blanc n°2

Option Economique

MATHEMATIQUES

7 Janvier 2025

Premiére Partie : Fonctions et Lois Gamma et Beta

1. o L’exposant a — 1 de la puissance z% ! est positif donc la fonction puissance z — z% ! est définie
et continue sur R. La fonction exp est définie et continue sur R. Le produit de fonctions définies et
continues sur R est défini et continu sur R.

o L’intégrale d’une fonction continue sur un segment fermé et borné [0, A] existe toujours.

1
« Au voisinage de 400, % e =0 <2> En effet
T

a—le—:c a+1

T T
= — 0 en +o00

1 x
2 €

e On veut appliquer un argument de comparaison :

1

1
— Les deux fonctions x +— % "e™" et x — —; sont positives sur [A, +ool.
x

— L’intégrale

est une intégrale de Riemann convergente.

D’apres le théoreme de comparaison des intégrales de fonctions positives, on en déduit que

“+o00
/ 24 e dy
A

est convergente.

e D’apres la relation de Chasles,

I(a) = / 2 e dr = / 2% e do + / 2% le™® da.
0 0 A

C’est la somme de deux intégrales convergentes, donc

‘F(a) est convergente et donc la fonction est bien définie. ‘

2. (a) e« On réalise une intégration par parties sur [0,t] avec u(z) = 2% et v/(z) = e ®. On a v/(z) = az®"!

et v(x) = —e . Les deux fonctions sont C1, donc on peut appliquer la formule d’intégration par
parties et

t ¢ ¢
/ % " dx = [z% ") + / ax® e dx =t + / az® e da
0 0 0
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o En faisant tendre ¢t — +oo dans 1’égalité précédente, on utilise les limites

lim (—t% ") =0 par croissances comparées,
t—+o00

t t

lim % *dxr =T(a+1), lim 2 e dr = aT'(a).
t—=+o0 [ t—=+o0 Jg

‘On obtient alors I'(a + 1) = al'(a). ‘

(b) i. Ona
t t
/ 2 e ™ dy = / e Tdr = [—e*ﬂg =1—e¢t.
0 0

En faisant tendre t — +o00, on obtient

o Initialisation : I'(1) =1 =0l = (1 — 1)
o Hérédité :Soit n € N. en supposant I'(n) = (n — 1), on a

I'n+1)=nl'(n) =n(n—1)! =nl.

‘Conclusion : Ainsi I'(n) = (n — 1)! pour tout n > 1.‘

2% te™® est définie et continue sur R% (& une constante multiplicative pres,

3. (a) e La fonction z — T'a)

ce qui ne change pas la continuité, c’est la méme fonction que celle de la question 1.a(i)). La
fonction g, est aussi continue sur R* comme une constante. La continuité en 0 est sans intérét (on
peut montrer que g, est continue en 0 mais ¢a n’est pas nécessaire).

o La fonction g, est positive sur R. En effet, sur R, elle est le produit de deux fonctions positives et
de la constante I'(a) qui est elle-aussi positive car c’est 'intégrale d’une fonction positive (positivité
de l'intégrale). Sur R_, c’est évident.

0

+00
e Remarquons tout d’abord que g, est nulle sur R_ donc / gao(z)dx = 0. Puis / go(z)dx =
0

—0o0

too 1 +o0

/ T )xafle*xdx. Or I'intégrale / 2% te " dx est convergente et vaut I'(a). Donc par linéa-
0 a 0

+oo

+00 1
rité de 'intégrale, / ga(x)dx est convergente et vaut mf(a) = 1. Donc / go(z)dz = 1.
0 a

—0o0

‘Toutes les conditions sont donc réunies pour que g, soit la densité d’une variable aléatoire a densité. ‘

+oo
(b) i. La variable X admet une espérance si et seulement si / |zge(x)| dz converge. La fonction
—0o0

0

x + |xgq(z)| est continue sur R sauf peut-étre en 0. Comme g, est nulle sur R_ donc / |zge(x)| dz
—0o0

+00 +oo
converge et vaut 0. On remarque que I'intégrale / |xgq(x) do = / x%~*dx converge et vaut
0 0
I'(a+1). Ainsi, E(X) existe et vaut

+o0 +oo a
E(X) = /0 x go(x)dx = I‘(la) /0 x%e P dr = Lla+1) =[a]
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+oo
ii. D’apres le théoréme de transfert, la variable X admet une variance si et seulement si / |22 gq(z)| dze
—0o0

converge. La fonction x — |22g,(x)| est continue sur R sauf peut-étre en 0. Comme g, est nulle
0

+oo
sur R_ donc / |2%gq(2)| dz converge et vaut 0. On remarque que l'intégrale / |zge(x) do =
o 0

“+o0o
/ % e™%dx converge et vaut T'(a + 2). Ainsi, E(X?) existe et vaut
0
1 [tee [(a+2)
E(X?) = / e dy = L —q(a+1).
I'(a) Jo I'(a)
La variance est alors, d’apres la formule de Kéenig-Huygens,

Var(X) = E(X?) — (B(X))* = a(a + 1) — a® = [a]

t
4. (a) Dans l'intégrale / %711 — )" Ydz, on fait le changement de variables x = tu. Les bornes pour u
0

t 0
deviennent 0 et 1 (quand x vaut t, u vaut i 1 et quand z vaut 0, u vaut 7= 0). dx devient tdu et

enfin
xa_l(t _ m)b—l — (tu)a_l(t _ tu)b_l — ta_lua_ltb_l(l _ u)b—l — ta+b—2ua—1(1 _ u)b—l'

On a donc

t 1 1
/ 2t —2) e = / 1020711 — ) du = t‘”'b_l/ w1 — w)* " tdu = t*T*"1B(a, b).
0 0 0

(b) On fait le changement de variables u = 1 — z. Cette fois-ci les bornes sont inversées et dx devient —du,
la fonction devient
xa—l(l _ x)b—l _ (1 - u)a—lub—l_

On obtient dont

Bla,b) = /01 21— 2)Pld = /10 W11 — ) (—du) = /01 W11 — u)*ldu = B(b,a) |

1 1
B(a,1) = / 2" tdr = {136“] = .
0 a 0 a

(d) i. Dans lintégrale qui définit B(a,b + 1), on fait l'intégration par parties en voyant la fonction
z— 2% 1 (1—x)” comme le produit de u(z) = (1—2z)% et de v/(z) = 2* . Ona v/ (z) = —b(1—z)>!

(c) On a

et v(z) = —x% Les fonctions u et v sont de classe C* sur [0, 1] et on peut donc faire une intégration
a
par parties :

1 Yoyt b
B(a,b+1) = Lx“(l — :c)b] + / (1 — z)" e = EB(a +1,b).
0

g a
ii. On montre par récurrence les propriétés suivantes (attention aux quantificateurs!)
(b—1)!(a—1)!
P():"Va e N* B(a,b) = ——F———>.

(®) (a,8) (a+b—1)!

o Initialisation : Pour b =1 et pour tout ¢ > 1, on a

1 1—1)la—-1)!
Ble.l) =7 = : (a+)1(— 1)!)

(la premiere égalité est celle de la question 4.c), ce qui montre la propriété P(1).
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o Hérédité : On suppose que pour un certain b et pour tout a, on a

(b—1)(a—1)!

Bla.b) = =25 -1

Vérifions donc la propriété P(b + 1). Prenons donc un a quelconque. On a déja, d’apres la
question précédente,

b
B(a,b+1) = -Bla+1,b).
a

L’hypothese de récurrence porte sur tous les entiers a. On a donc aussi

B(a+1,b)=m’
puis b (b—1lal  bl(a—1)!
B(a,b+1)=g' (@+b)!  (atb)!l’

ce qui montre P(b+ 1).

e Conclusion :
(b—1)l(a—1)!

(a+b-1)!
5. (a) X et Y sont des variables positives (a support dans Ry) donc la somme aussi puisque la somme de

deux nombres positifs est positif. Ainsi, tous les nombres ¢ > 0 ne sont pas dans le support de X +Y
et donc hgp(t) = 0.

(b) On prend donc ¢t > 0 et on a

Vb e N*Va € N* B(a,b) =

+oo
hap(t) = / 9a()gp(t — z)dz.

—0o0
Or g, et g, sont nulles sur R_, ce qui signifie que si x < 0, go(z) =0 et si t —x < 0 (c’est-a-dire x > t)
alors g,(t — z) = 0. Ainsi, on obtient

1 1 et

hap(t) :/0 ga(:v)gb(t—:n)dm:/o I‘(a)xa_le_xl“(b)(t_x)b_le_(t_m)dx:F(a)I‘(b)/O @ Ht—z) " tdx

ta+b—1

Dans la derniére intégrale, on reconnait ’expression de la question 4.a; elle vaut donc B(a,b)

Ainsi
B(a,b) patb—1,—t

habt) = FlayT(e)

(c) On sait que h,p est une densité de probabilités, donc en particulier, son intégrale existe sur | — oo, +00]

et vaut 1. Or
Heo " B(a,b) B(a,b)T'(a + b)
1= ha t) = 7’ta+b71 7tdt: ) '
[ et = [ NONG
Puis, en divisant par lm, on obtient
_ T(a)I'(b)
B(a, b) = m

(d) On remplace cette expression de B(a,b) dans 'expression de la densité h,j obtenue a la question b et
on obtient, pour t > 0 :

jatb-l ot _ 1 ayp1

)
b) I'(a+0) ’

et pour t > 0,
hap(t) = 0.

C’est exactement la densité d’une loi gamma de parametre a + b.
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6. (a) On proceéde de maniere identique a la loi gamma (question 3.a) et on montre que
o La fonction f,; est définie sur R.

o La fonction fq) est strictement positive sur ]0,1[ et nulle sur son complémentaire (donc tous
comptes faits, positive ou nulle).

e Son intégrale entre —oo et 400 est en fait une intégrale entre 0 et 1 puisqu’elle est nulle en dehors
de [0, 1]. Puis

+o0 1 1
/oo fa,b(x)dm :/O fa,b(m)da7 = B(;Ll,b)/o IL’ail(l — w)bildx = B(a’ b) = 1.

(b) De la méme fagon que précédemment les intégrales a étudier pour l'espérance et le moment d’ordre
2 sont a priori des intégrales sur R, mais en fait dans notre cas des intégrales sur [0, 1] uniquement
puisque les fonctions a intégrer sont toujours nulles en dehors de [0, 1]. L’espérance et le moment d’ordre
2 apparaissent alors comme des intégrales de fonctions continues sur [0, 1], ce qui régle déja le probléeme
de leur convergence. Pour le calcul, on a

(b—1)la!

1 ! _ _ B(a+1,b) (atb)! a
E(X):/:L’~xa Y1 —z)tde = S e e .
B(a,b) Jo B(a,b) % atb
(c) Et
(b—1)!(a+1)!
E(X?) = ; /lzr““(l — )"z = Bla+2,b) _ “@brl _ ala+1)
B(a,b) J, B(a,b) % (a+b)a+b+1)
Puis,
v = Mot _< a )2_a<a+1)(a+b>a2(a+b+1>_ ab
“(a+b)(a+b+1) a+b)) (a+0b)2(a+b+1) C(a+b2(a+b+1)

Deuxiéme Partie : Evolution de I’opinion d’un individu

7. (a) C’est une question de cours : ‘E(XZ) = q;, et Var(X;) = a;(1 — o). ‘

(b) i. Comme indiqué, on procede par récurrence et on montre les propriétés
P(i) = 1l existe une fonction g; telle que X; = g;(Zo, -+, Z;)”.

e Initialisation : La premiere étape est donnée par 1’énoncé et on a Xy = Zp de sorte que
90(Zo) = Zo.
o Hérédité : Supposons la propriété P(i) vraie pour un entier ¢ arbitraire :

Xi=gi(Zo,-++,Z;)
pour une certaine fonction g;. Alors on a
Xiti=(1-Zip1)Xs + Zia(1 - X5)
d’apres le texte. Et donc
Xiy1 = (1= Zip1)9i(Zo, -+, Zi) + Ziga (L — gi(Zo, -+ Zi).

On constate que X;;1 ne dépend que des variables Zy,---,Z;11 (et que la dépendance est
donnée par X;+1 = gi+1(Zo, -+ , Zi+1) avec

9i+1(Zo, -+ Ziy1) = (L= Zi31)9:i(Zos - -+, Zi) + Ziv19i(Zo, -+, Zy)).

C’est donc que la propriété P (i + 1) est vraie.
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« Conclusion : ’ Pour tout ¢ € N, il existe une fonction g; telle que X; = ¢;(Zo, - , Z;)

ii. Puisque X;—1 = g;—1(Zo,- -+, Z;i—1), il suffit d’utiliser le lemme des coalitions pour montrer que
X,;_1 est indépendante de Z;.

(c) D’apres ce qui précede (1 — Z;) est indépendante de X;_1 et Z; est indépendante de (1 — X;_1). Par
ailleurs I'espérance d’un produit de deux variables aléatoires indépendantes est égale au produit des
espérances (et ’espérance d’une somme est toujours égales a la somme des espérances). On a donc

o = E(X;)
= E(l1-Z)E(Xi-1)+ E(Z)E(1 - Xi1)
(1 - E(Z)) E(Xi1) + E(Zi) (1 — E(Xi-1))

(1 —pi)ai-1 +pi(1l — ai-1).

(d) On procede par récurrence sur les entiers i > k pour montrer que

o Initialisation : Le premier indice ¢ & considérer est 'indice ¢ = k. Or on a supposé que py = ok
Ainsi

1 1 1
Q. = <1— 2) ai_1+§(1_ai_1) = 5

On a donc montré que P(k) est vraie.

1 .
o Hérédité : Supposons que «; = — pour un entier ¢ arbitraire. Alors d’apres ce qui précéde, on a
2

1
aussi a1 = 3 (lentier k de la question précédente est un entier quelconque et ce qu’on a démontré

s’applique en particulier & k = 7). Donc P(i + 1) est vraie.

1
e Conclusion : |Vi >k, a; = 3

(e) o La suite (a;) est arithmético-géométrique définie par

;= (1-2p;)a;—1 +pi
1
. On résout I"équation x = (1 — 2p;)x + p;. On obtien z = 3" On pose alors la suite (3;);en définie

1
par 8 = «; — 3 Alors
1 1
Bi = a; — 5 = (1 =pi)ai-1 +pi(1 —@i1) — 5
1 1
= @i-1—pai-1+p—pai1—5=(1-2p)aj1+p—

2 2
3D
= (1-2 -2
( p)<azl 1—2]?)

= (1-2p) (Oéi—1 - ;) =(1-2p)Bi

« La suite (8;)iexy est donc géométrique de raison (1 — 2p) M. On a donc

Bi = (1—2p)’ Bo.
1
2

b= (-2 (p-3)

1
(1). Ici on a fait 'hypothése que 1 — 2p # 0 (car p # 5)7 ce qui signifie que la raison de la suite est non nulle donc que la suite est

Or ap = E(Xy) = E(Zy) =po =p et on a Sy = p — —. Finalement

non constante.
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1
e Onao; = B; + 3 c’est-a-dire
; 1 1
=(1-2p) (p—=)+=.
Q; ( p) <p 2> + 9

o La suite (a;);en converge si et seulement si la suite géométrique de terme général (1 — 2p)i converge,
c’est-a-dire si et seulement si la raison 1 — 2p de cette suite est dans l'intervalle | — 1, 1[. Or

—1<1-2p<l e 2<-2p<0&0<2p<2&0<p<1.

C’est I’hypothese qui est faite sur p et on conclut que la suite («;);en converge toujours. Une suite
géométrique convergente converge vers 0 et on conclut finalement que

1
lim o; = —.
1——+00 2

8. (a) Clest tres classique (on rappelle qu’on suppose tout au long du sujet que les bibliotheques usuelles sont
importées) :

def simul_ Z(p)
if rd.rand()<p
return 1
else
return 0

(b)
def Suite X(n)
X=[simul Z(p(0))]
for k in range(n)
X.append ((1—simul_Z(p(i)))*X[i—1] + simul_Z(p(i))*(1—-X[i—1])
return X

9. Avant toute chose, remarquons que ’événement A; est aussi égal a I’événement [Z; = 0].
(a) Prenons ¢ # j. D’apres la remarque précédente, P(4; N A;) = P((Z; = 0)N(Z; =0)) = P(Z; =
0)P(Z; = 0) car les variables Z; sont indépendantes. On retrouve bien

(b) Dans le méme esprit,
P(A;) =P(Z;=0)=1-p;.

(c) o Si By k41 se réalise alors, pour tout i € [n,n + k+ 1], X; = X,, et en particulier X; = X,, pour
tous les indices i € [n,n + k], c’est-a-dire que B, se réalise. On a donc By, 41 C By k-
¢ On a évidemment

n+k

Bpi=1Xn=Xpn1| N N[ Xpjpo1 = Xngi) = ﬂ A;.
i=n+1

o Puisque les événements A; sont indépendants, on calcule la probabilité de leur intersection par le
produit des probabilités : on a bien

n+k n+k n+k
P(Bn,k):P< N Az»)) = [I Pt = T a-m.
1=n+1 i=n+1 i=n-+1
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(d) e Ona
B, = ﬂ By k.
k>0

Or la suite des événements (B, ;)ren est une suite décroissante. On a donc

“+o0
P B, = [ P(B, ).
(koo k) oo i)

o Puisque 'événement B,, signifie que la suite (X;); est constante & partir du moment n, on a bien
B, C By+1 (si une suite est constante a partir du moment n, elle est constante a partir du moment
n+1).

(e) Cette fois la suite (By,), est croissante et donc

P(B)=P (U Bn) = lim P(B,).

n—-+0o
n>0

10. (a) Sila série Z pi est convergente, alors en particulier, la suite (p;); tend vers 0. Puis In(1 — p;) converge
>0

par composition vers In(1) = 0. Donc

lim z; =0.

1——+00
On a donc, puisque limp; = 0, In(1 — p;) ~i— 100 —Pi, PUIS X; ~i—100 pi- Par ailleurs p; > 0 (c’est une
probabilité). Et aussi 1 — p; < 1 donc In(1 — p;) < 0 et finalement z; > 0. On peut donc appliquer
le théoreme de comparaison par équivalence pour les séries a termes positifs et conclure que sz

120

converge aussi.

(b) On a
n+k n+k
In (P(By)) :m( 11 (1—pi)> = ) In(l1-p)

i=n-+1 i=n-+1
en utilisant le calcul de P(B,, 1) de la question 9.c(iii). On va maintenant passer a la limite dans les deux
membres de cette égalité. D une part, . lim P(B,) = P(By) et comme la fonction In est continue, on
—+00

a aussi
lim In(P(B,x)) =In(P(B,)).
k—+o0 ’
D’autre part, puisque la série converge Zln(l — p;) converge d’apres la question précédente (si une
i

série converge, son opposé aussi), alors la série E In(1 — p;) converge et sa somme est

i>n+1
“+o0o +oo
Z In(1—p;) =— Z z;. On conclut donc, par passage a la limite lorsque &k tend vers +oco que
i=n+1 i=n+1
“+o0o
In(P(Bn) =— Y
i=n-+1

ou encore en prenant ’exponentielle des deux membres :

“+o0o
P(B,) =exp ( Z 1:1) .

i=n—+1
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()

On fait maintenant tendre n vers +o0o dans les deux membres de I’égalité précédente. D’apres la question
9.e, on a
lim P(B,)= P(B).

n—-+oo

“+o00
Pour le deuxieme membre, il suffit de constater que g x; est le reste d’une série convergente, et ce
i=n+1
reste tend vers 0 lorsque n — +oo. Ainsi

En composant par la fonction exp qui est continue, on obtient
400
ngrfoo exp (— i:;_l wl) =exp(0) = 1.
Donc, par passage a la limite dans 1’égalité de la question précédente, on obtient

P(B) =1

Troisieme Partie : Urne de Polya

11. (a)

12. (a)

L’événement [R,, = i] signifie qu’il y a ¢ boules rouges dans 'urne apres n tirages, et donc r+v+n boules
en tout d’apres la question précédente. Puisque la probabilité de piocher chaque boule est uniforme, la
probabilité de piocher une boule rouge dans une telle urne est égale au nombre de boules rouges, divisé
par le nombre totale de boules, c’est-a-dire

?
Pr _1(Apy) = ——.
(=) (An1) =
. 7
Pig,=i(Bn1 =i+ 1) = Pry=j (Ans1) = .
Puis

. _ ? r+uv+n-—1
PR,=ij(Rn+1 =1) = Pr,=)(An+1) =1 = Pp,=(Ant1) = 1 — Totn. rtoxn

def Polya(r,v,n)
R=[r]
for k in range(n) :
if rd.rand()<R[k]/(r+v+k)
R.append (R[k]|+1)
else
R.append (R[k])
return R

i. Le protocole expérimental de la (n+ 1)-éme étape ne dépend que de la composition de 'urne apres
le n-iéme tirage, et pas de la facon dont I'urne s’est remplie au cours du temps. C’est exactement
ce que signifie cette formule. @

(2). Peut-étre faudrait-il trouver un argument plus convaincant...
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ii. On raisonne par récurrence sur n et on montre les propriétés :
P(n):"(s1,--,8n), P(Ri=r+si)N(Ra=r+sy)N---N(Rp =7+ 5y))

s D (v+n—s, -1 (r+ov-1) |
(r—1)! (v—1)! (r+v+n-—1)"

e initialisation :

On a,
— Si 51 =0, d’une part
v
P(R1:T+81):P(R1:T):P(VY1):T+,U
et d’autre part
(r+s1—1)@w+r—s1-1) (r+v-1)!  (r-Dw+1-1)! (r+o-1)" v
(r—1)! (v—1)! r+v+n—1)1 (r-1! (v-1)! (r+o+l1-1) r+v
— Si s1 =1, d’une part
r
P(R1:7’+81)=P<R1=T+1):P(R1):T+v
et d’autre part
(r+si—-Y@w+r—-si-1)! r+o-1) @) (@-1)! r+o-1) 7
(r—1)! (v—1)! r+v+n—1) (-1 w-)Fr+ov+1-1 r+o

La formule est donc valable pour n = 1 et pour toute valeur de s;.
o Hérédité : on suppose la propriété vraie au rang n et on calcule la probabilité
P(Ri=r+si)N(Re=r+s)N---N(Rp =7+ 5n) N (Ryy1 =7+ Sp+1))

avec la formule des probabilités composées :
P(Ri=r+4+s1)N(Ra=r+s2)N---N(Ry=74+8,) N (Rpg1 =74 Snt+1))
=P(Ri=r+s1)N(Re=r+s)N---N(Ryp =71+ 5,))
X [P[(Rl=r+sl)m(R2:r+52)m---m(Rn=r+sn)](Rn—H =r+ Sn+1)
= P((R1 =r+s)N(Re=r+s)N---N(R,=r+ Sn)) . P[Rn:r—l—sn](Rn—H =7+ Spt1)

d’apres la question précédente. On utilise alors ’hypothese de récurrence :

P(Ri=r+si)N(Ra=r+s2)N---N(Rp=74+58,) N(Rpy1 =7+ Sp+1))

C(rtsy =D (wtn—s,— 1! (r+v-—1) B
(=1 (v—1)! (r+v+n—1)! “Plry=rts,)(Bng1 =7+ Spt1).

Pour montrer la propriété au rang n + 1, on distingue deux cas, selon si s,11 = $, OU Spy1 =
sn + 1. Dans le cas ol sp+1 = Sp, On a

v+n-—s
PRy=rts,)(Bnt1 =7+ 8n41) = PRy—rgs,) (Bnt1 =7+ 8n) = P, =, (Ant1) = ﬁ

On reporte la valeur de la probabilité conditionnelle dans le calcul de [P((Ry = r+s1)N(Re =
r+s2)N--N(Ry =7+ 8,) N (Rpt1 =7+ $p)) (on rappelle que s,4+1 = sy, ici) et on trouve
P(Ri=r+si)N(Ra=r+s2)N---N(Rp=7+5,) N(Rpy1=7+5p))
r+sp—Dw+n—s, - (r+v-1)" ov+n-s,

(r—1)! (v—1)! (r+v+n—-1! r+v+n
C(rtsy =D (v+n—sy)! (r+v—1)!
(r—1)! (v—1! (r+v+mn)!
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ce qui est la formule attendue au rang n + 1 dans ce cas (Sp4+1 = Sp)-
On traite enfin le cas ou $p+1 = s, + 1. On a dans un premiers temps :

4+ Sp

Pip=rs) (Bnt =7+ $041) = Plry=risg) (Bnsn = 7 80+ 1) = Pl (Ansr) = —— =

On reporte la valeur de la probabilité conditionnelle dans le calcul de [P((R; = r+s1)N(Re =
r+s2)N---N(Ry, =74 8,)N(Rpt1 =1+ 5y,)) (on rappelle que s,4+1 = s, + 1 ici) et on trouve

P(Ri=r+si)N(Ra=r+s2)N---N(Rpy=7+58,) N(Rpy1=7r+s,+1))

s =Dl wtn—sp 1! (r+o-1!  r+sy
 (r=1)! (v—1)! (r+v+n—-1! r+v+n
(s (vt — (s F D)) (r+v—1)!

(r—1)! (v—=1)! (r+v+n)!

ce qui est la formule attendue au rang n + 1 dans ce cas (Sp+1 = sp + 1).

(b—1)!(a—1)!
(a+b—1)!
ici, c’est la question 4.d(ii) ; pour des valeurs non entieres, il faut remplacer la fonction ! par la fonction

gamma, comme dans la question 5.c mais ce n’est pas ce qui sera utilisé ici). Ainsi

(b) Nous avions établi que B(a,b) = (pour des entiers comme ce sera le cas d’application

(rtsn—D!(v+n—sn—1)!
B(r+sp,v+n—sn) r(?"i—sn—I-oin?zsj—l) r+sp—D)w+n—s, -1 (r+v-1)!

B(r,v) 7(7"&21!)(1’1*)})’  (r=1)! (v—1)! (r+v+n-1)0"

ce qui coincide avec l'expression de
P(Ri=r+si)N(Re=r+s)N---N(R, =7+ sy)).

(¢) 1i. s, =k peut aussi s’écrire
n—1

Z (3i+1 — Si) +s1 = k.

i=1
Or chacun des n nombres s; 11 —s; pour i € [1,n— 1] et s; peut prendre la valeur 0 ou 1. Pour que
sp = k, il faut donc qu’il y ait k£ de ces n nombres qui prennent la valeur 1 et n — k qui prennent

n
la valeur O : il faut donc choisir £ nombres parmi les n et il y a < k:> possibilités.

ii. On applique la formule des probabilités totales au systéeme complet d’événements
(Rl :r—|—31)ﬂ(R2 :T—l—Sg)ﬂ-'-m(Rn_l :T+3n—1);

avec tous les choix possibles de s1,- -, s,—1 tels que s, = k. D’apres la question précédente, il y
ny ., ) N . , .y
a I événements dans notre SCE et d’apres la question d’encore avant, tous ces événements ont

B(r+k,v+n—k)

la méme probabilité Blro) . Ainsi
P(R,=r+k) = > P(Ri=r+4+s)N(Re=r+s)N---N (R, =7+k))
S1,*Sn—1 tq sn=k
B Z B(r+k,v+n—k)
- B(r,v)

81, Sn—1 tq sn=k
n\ B(r+k,v+n—k)
k B(r,v) '
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iii. On part du membre de droite

<Z> /lek(l_x)n-kfr,m)dfc - (Z

1
— ( ) / xk:-i—r—l(l o x)n—k—&-fu—ldx
0

1
1
k n—k r—1 v—1
1-— 1-—
/0 (1 —x) B(r,v)x (1—2)""dx

>3

B(r,v)
_ (Z) B(k +];’(:7 ;)k +0)

, ce qui est bien la formule obtenue pour P(R,, =r + k).

(d) On peut interpréter la formule intégrale de la maniére suivante, pour faire apparaitre la loi binomiale
W7 de parametres n et x :

<:> /0 1= ) () = /0 1 (Z) 2t (1 —2)" " fro(@)de = /0 CPOWE = ) frle)d.

Autrement dit, en faisant le changement d’indices j =r + k, on a

1
P(Rn = ]) :/0 P(Wrgf =J— T)fr,v(x)dx'
Puis, comme R,, est une variable discrete,
!
PR, <1)=) P(Rn=j).
§=0

En remplagant chaque valeur de P(R,, = j) par la formule intégrale précédente, on obtient

! 1
P(R, <1) = Z/ P(W2 = 3§ —7) fro(x)de.
j=0"0

Enfin, par linéarité de 'intégrale,
1 !
PR, <0 = [ Y POVE == 1) frale)de
0 <
7=0

Puisque W, est elle-méme une variable discrete, on reconnait dans I'intégrale 'expression de P(W,) <
[ —r), ce qui donne finalement

1
P(R, <) = / PW; <1l —r)fr(z)de.
0

13. (a) E(WY) = nx (sans commentaires...)

(b) On a d’apres le cours var(W,Y) = nz(1l — z). Nous allons donc montrer que pour tout = € [0,1],

1
z(l—1x) < T Pour cela, posons f(z) = z(1 — z) pour z € [0,1]. On a
fl(z)=1-2x

de sorte que la dérivée s’annule en 1/2 et les variations de f montrent facilement que f(1/2) est un
maximum pour f. Or f(1/2) = 1/4 et on obtient bien I'inégalité voulue.

(c) D’apres I'inégalité de Bienaymé-Tchebychev, on a, pour tout € > 0,

V(W)

P(|Wy —nz|>¢) < SR

En réinjectant la majoration de la variance de la question précédente, on obtient bien

n
P(|Wy —nz|>e¢) < 12
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(d) L’événement [|W,Y — nz| > €| peut s’écrire
(WS —nx| >¢e|=[W] —nz>c]U[W!—nx < —¢.
(rappel |y| > e <y >couy < —¢). On a donc
(W3S —nz < —¢] C [[WT —nx| > €]

et en particulier
P ([Wy —nx < —¢]) < P([[Wy — nz| > €]),

ce qui signifie, avec la majoration précédente que

- n
P([Wy —nzx < —¢]) < 12

On applique cette inégalité a ¢ = n*?.On a
P(W7 —nz < —¢])=P ([Wff < nx — n2/3])

et
no_n L
42 4An4/3 4 ’

donc

1
P ([Wff <nzr— n2/3]> < Zn_l/‘g,

ce qu’on voulait.
On procede a l'identique pour la deuxieme majoration

1
P ([W,f > nx + n2/3]> < Zn’l/?’,

en utilisant cette fois que
(WS —nx >¢e| C[|[WT —nz| > €]
puis en 'appliquant aussi a € = n?/?.

(e) Remarquons que

-1/3 2/3

S nrz>2m+n

& mémj—nw?’.

Ainsi, si z > m + nfl/?’, alors
n
[We < m] C [WE < nz —n??
et 1
P(W? <m) < P(W? < nz —n??) < 171—1/3_

On procede de méme pour la deuxiéme inégalité (en utilisant la deuxieme inégalité de la question
précédente). On montre successivement que

m
xé——n’l/?’@m}nm—kn
n

2/3
)

. m _
puis donc, pour t < — —n 1/3,
n

(W2 >m] C [W® > nz —n??

et
1
P(W2 >m) < P(WZ > nz+n?3) < Zn_l/y’.
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m
14. C’est la vraie question difficile de I’épreuve. L’hypothése sur la limite de —~ ne sert pas & grand chose dans

. . N . mn — m’rb —
les questions a,b,c, si ce n’est a garantir que les deux nombres — —n 13 et =2 4+ n~'/3 sont contenus

dans lintervalle [0, 1] et que m est un entier plus petit que n (ge qui est indisgensable pour utiliser les
majorations de la question 14.e), au moins a partir d’un certain rang N (ce qui suffit pour ce que nous
allons faire puisqu’on cherche a faire tendre n vers +o00). Dans toutes les parties de cette question, nous
supposerons donc que n > N.

m m
(a) Puisqu’on intégre sur intervalle [—* + n~'/3 1], tous les x considérés ici vérifient z > —= + n~'/3,
n
On a donc .
0<P ([W,f <nx — n2/3]> < Zn_l/?’
, puis

0<P ([Wff < nx — n2/3}> < %nfl/g‘frv (x)

car fr, est une densité de probabilité donc positive. Par positivité de 'intégrale

1 n-1/3 1
0< / P(W;; <my,) fro(r)de < / fro(x)de.
My p-1/3 4 My p-1/3

Or, a nouveau parce que f,, est positive et en utilisant la positivité de I'intégrale, on a

/1 fro(z)de < /01 frw()de = 1.

mn —-1/3
no T

On obtient donc la majoration

1 n—1/3
0< / PW;y <my) fro(z)de < .
mn +n71/3 4

n

On fait enfin tendre n vers +o0o. Les deux membres extrémaux de 'inégalité tendent vers O et on en
déduit par le théoreme des gendarmes que

1
lim PWy < my,) fro(z)de = 0.

n—+oo [ mn +n71/3
n

(b) La question est particulierement difficile, il faut exploiter le fait que 1’on intégre une fonction bornée
sur un intervalle qui se rétrécit lorsque n augmente. On a d’une part

(comme toute probabilité). On pourrait aussi montrer que pour tout x € [0, 1],
0< fro(@) <1,

puis conclure par croissance de 'intégrale. Cette majoration n’est pas du tout triviale, et le fait que f; ,
soit une densité de probabilité n’aide en rien puisqu’une densité peut (exceptionnellement) prendre des
valeurs trés grande (penser a une gaussienne de trés petite variance par exemple qui prend des valeurs
trés grande autour de la moyenne).

Voici une autre facon, plus abstraite mais 1égerement plus efficace de répondre & la question. On note
F,. ., la fonction de répartition d’une loi de probabilité de densité f, ,. Apres avoir encadré la probabilité
P(W7 < my) entre 0 et 1, on a donc, par positivité de 'intégrale,

mn —1/3
no

min_i_nfl/s
0< / P(W; <my,) fro(x)de < /

mn _,-1/3 mn _
n n

fro(@)de = F., (% + n_1/3) —Fr (% - n‘1/3) .
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Or F,, est une fonction de répartition d’une variable & densité, et c’est en particulier une fonction
continue. Une fonction continue F' en ¢ vérifie la propriété suivante : pour toute suite (u,) convergente
vers £,

lim F = F(0).
Jlm Flun) = F(0)
C’est ce qu’on utilise ici pour calculer la limite du membre de droite de la précédente inégalité. On a

. m _ . m _
lim — +n 3= lim — —n" 3=t
n—+oo N n—-+oo N

Donc par continuité de F;.,, :

lim F,, (% + n_1/3> ~F., (ﬁ - n—1/3) = Fyu(t) — Fro(t) = 0.
n n

n—+0o ’

On conclut maintenant sur la limite de l'intégrale par le théoréme des gendarmes.

(¢) C’est exactement le méme raisonnement que pour la question a.
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