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Première Partie : Fonctions et Lois Gamma et Beta
1. • L’exposant a − 1 de la puissance xa−1 est positif donc la fonction puissance x 7→ xa−1 est définie

et continue sur R. La fonction exp est définie et continue sur R. Le produit de fonctions définies et
continues sur R est défini et continu sur R.

• L’intégrale d’une fonction continue sur un segment fermé et borné [0, A] existe toujours.

• Au voisinage de +∞, xa−1e−x = o

(
1
x2

)
. En effet

xa−1e−x

1
x2

= xa+1

ex
→ 0 en +∞

• On veut appliquer un argument de comparaison :

– Les deux fonctions x 7→ xa−1e−x et x 7→ 1
x2 sont positives sur [A, +∞[.

– L’intégrale ∫ +∞

A

1
x2 dx

est une intégrale de Riemann convergente.

D’après le théorème de comparaison des intégrales de fonctions positives, on en déduit que∫ +∞

A
xa−1e−x dx

est convergente.
• D’après la relation de Chasles,

Γ(a) =
∫ +∞

0
xa−1e−x dx =

∫ A

0
xa−1e−x dx +

∫ +∞

A
xa−1e−x dx.

C’est la somme de deux intégrales convergentes, donc
Γ(a) est convergente et donc la fonction est bien définie.

2. (a) • On réalise une intégration par parties sur [0, t] avec u(x) = xa et v′(x) = e−x. On a u′(x) = axa−1

et v(x) = −e−x. Les deux fonctions sont C1, donc on peut appliquer la formule d’intégration par
parties et ∫ t

0
xae−x dx = [xae−x]t0 +

∫ t

0
axa−1e−x dx = tae−t +

∫ t

0
axa−1e−x dx
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• En faisant tendre t → +∞ dans l’égalité précédente, on utilise les limites

lim
t→+∞

(−tae−t) = 0 par croissances comparées,

lim
t→+∞

∫ t

0
xae−x dx = Γ(a + 1), lim

t→+∞

∫ t

0
xa−1e−x dx = a Γ(a).

On obtient alors Γ(a + 1) = aΓ(a).

(b) i. On a ∫ t

0
x1−1e−x dx =

∫ t

0
e−x dx =

[
−e−x

]t
0 = 1 − e−t.

En faisant tendre t → +∞, on obtient

Γ(1) =
∫ +∞

0
e−x dx = 1.

ii. On montre par récurrence sur n > 1 que

Pn : Γ(n) = (n − 1)!.

• Initialisation : Γ(1) = 1 = 0! = (1 − 1)!.
• Hérédité :Soit n ∈ N. en supposant Γ(n) = (n − 1)!, on a

Γ(n + 1) = nΓ(n) = n(n − 1)! = n!.

Conclusion : Ainsi Γ(n) = (n − 1)! pour tout n > 1.

3. (a) • La fonction x 7→ 1
Γ(a)xa−1e−x est définie et continue sur R∗

+ (à une constante multiplicative près,

ce qui ne change pas la continuité, c’est la même fonction que celle de la question 1.a(i)). La
fonction ga est aussi continue sur R∗

− comme une constante. La continuité en 0 est sans intérêt (on
peut montrer que ga est continue en 0 mais ça n’est pas nécessaire).

• La fonction ga est positive sur R. En effet, sur R+, elle est le produit de deux fonctions positives et
de la constante Γ(a) qui est elle-aussi positive car c’est l’intégrale d’une fonction positive (positivité
de l’intégrale). Sur R−, c’est évident.

• Remarquons tout d’abord que ga est nulle sur R− donc
∫ 0

−∞
ga(x) dx = 0. Puis

∫ +∞

0
ga(x)dx =∫ +∞

0

1
Γ(a)xa−1e−xdx. Or l’intégrale

∫ +∞

0
xa−1e−xdx est convergente et vaut Γ(a). Donc par linéa-

rité de l’intégrale,
∫ +∞

0
ga(x)dx est convergente et vaut 1

Γ(a)Γ(a) = 1. Donc
∫ +∞

−∞
ga(x) dx = 1.

Toutes les conditions sont donc réunies pour que ga soit la densité d’une variable aléatoire à densité.

(b) i. La variable X admet une espérance si et seulement si
∫ +∞

−∞
|xga(x)| dx converge. La fonction

x 7→ |xga(x)| est continue sur R sauf peut-être en 0. Comme ga est nulle sur R− donc
∫ 0

−∞
|xga(x)| dx

converge et vaut 0. On remarque que l’intégrale
∫ +∞

0
|xga(x) dx =

∫ +∞

0
xae−xdx converge et vaut

Γ(a + 1). Ainsi, E(X) existe et vaut

E(X) =
∫ +∞

0
x ga(x) dx = 1

Γ(a)

∫ +∞

0
xae−x dx = Γ(a + 1)

Γ(a) = a .
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ii. D’après le théorème de transfert, la variable X admet une variance si et seulement si
∫ +∞

−∞
|x2ga(x)| dx

converge. La fonction x 7→ |x2ga(x)| est continue sur R sauf peut-être en 0. Comme ga est nulle

sur R− donc
∫ 0

−∞
|x2ga(x)| dx converge et vaut 0. On remarque que l’intégrale

∫ +∞

0
|xga(x) dx =∫ +∞

0
xa+1e−xdx converge et vaut Γ(a + 2). Ainsi, E(X2) existe et vaut

E(X2) = 1
Γ(a)

∫ +∞

0
xa+1e−x dx = Γ(a + 2)

Γ(a) = a(a + 1).

La variance est alors, d’après la formule de Köenig-Huygens,

Var(X) = E(X2) −
(
E(X)

)2 = a(a + 1) − a2 = a .

4. (a) Dans l’intégrale
∫ t

0
xa−1(1 − x)b−1dx, on fait le changement de variables x = tu. Les bornes pour u

deviennent 0 et 1 (quand x vaut t, u vaut t

t
= 1 et quand x vaut 0, u vaut 0

t
= 0). dx devient tdu et

enfin

xa−1(t − x)b−1 = (tu)a−1(t − tu)b−1 = ta−1ua−1tb−1(1 − u)b−1 = ta+b−2ua−1(1 − u)b−1.

On a donc∫ t

0
xa−1(t − x)b−1dx =

∫ 1

0
ta+b−2ua−1(1 − u)b−1tdu = ta+b−1

∫ 1

0
ua−1(1 − u)b−1du = ta+b−1B(a, b).

(b) On fait le changement de variables u = 1 − x. Cette fois-ci les bornes sont inversées et dx devient −du,
la fonction devient

xa−1(1 − x)b−1 = (1 − u)a−1ub−1.

On obtient dont

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx =

∫ 0

1
ub−1(1 − u)a−1(−du) =

∫ 1

0
ub−1(1 − u)a−1du = B(b, a) .

(c) On a

B(a, 1) =
∫ 1

0
xa−1dx =

[
1
a

xa

]1

0
= 1

a
.

(d) i. Dans l’intégrale qui définit B(a, b + 1), on fait l’intégration par parties en voyant la fonction
x 7→ xa−1(1−x)b comme le produit de u(x) = (1−x)b et de v′(x) = xa−1. On a u′(x) = −b(1−x)b−1

et v(x) = 1
a

xa. Les fonctions u et v sont de classe C1 sur [0, 1] et on peut donc faire une intégration
par parties :

B(a, b + 1) =
[

1
a

xa(1 − x)b

]1

0
+ b

a

∫ 1

0
xa(1 − x)b−1dx = b

a
B(a + 1, b).

ii. On montre par récurrence les propriétés suivantes (attention aux quantificateurs !)

P (b) : ”∀a ∈ N∗ B(a, b) = (b − 1)!(a − 1)!
(a + b − 1)! .

• Initialisation : Pour b = 1 et pour tout a ⩾ 1, on a

B(a, 1) = 1
a

= (1 − 1)!(a − 1)!
(a + 1 − 1)!

(la première égalité est celle de la question 4.c), ce qui montre la propriété P (1).
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• Hérédité : On suppose que pour un certain b et pour tout a, on a

B(a, b) = (b − 1)!(a − 1)!
(a + b − 1)! .

Vérifions donc la propriété P (b + 1). Prenons donc un a quelconque. On a déjà, d’après la
question précédente,

B(a, b + 1) = b

a
B(a + 1, b).

L’hypothèse de récurrence porte sur tous les entiers a. On a donc aussi

B(a + 1, b) = (b − 1)!a!
(a + b)! ,

puis
B(a, b + 1) = b

a
· (b − 1)!a!

(a + b)! = b!(a − 1)!
(a + b)! ,

ce qui montre P (b + 1).
• Conclusion :

∀b ∈ N∗ ∀a ∈ N∗ B(a, b) = (b − 1)!(a − 1)!
(a + b − 1)! .

5. (a) X et Y sont des variables positives (à support dans R+) donc la somme aussi puisque la somme de
deux nombres positifs est positif. Ainsi, tous les nombres t ⩾ 0 ne sont pas dans le support de X + Y
et donc ha,b(t) = 0.

(b) On prend donc t > 0 et on a

ha,b(t) =
∫ +∞

−∞
ga(x)gb(t − x)dx.

Or ga et gb sont nulles sur R−, ce qui signifie que si x ⩽ 0, ga(x) = 0 et si t − x ⩽ 0 (c’est-à-dire x ⩾ t)
alors gb(t − x) = 0. Ainsi, on obtient

ha,b(t) =
∫ t

0
ga(x)gb(t−x)dx =

∫ t

0

1
Γ(a)xa−1e−x 1

Γ(b)(t−x)b−1e−(t−x)dx = e−t

Γ(a)Γ(b)

∫ t

0
xa−1(t−x)b−1dx

Dans la dernière intégrale, on reconnaît l’expression de la question 4.a ; elle vaut donc B(a, b)ta+b−1.
Ainsi

ha,b(t) = B(a, b)
Γ(a)Γ(b) ta+b−1e−t.

(c) On sait que ha,b est une densité de probabilités, donc en particulier, son intégrale existe sur ] − ∞, +∞[
et vaut 1. Or

1 =
∫ +∞

−∞
ha,b(t) =

∫ +∞

0

B(a, b)
Γ(a)Γ(b) ta+b−1e−tdt = B(a, b)Γ(a + b)

Γ(a)Γ(b) .

Puis, en divisant par Γ(a + b)
Γ(a)Γ(b) , on obtient

B(a, b) = Γ(a)Γ(b)
Γ(a + b) .

(d) On remplace cette expression de B(a, b) dans l’expression de la densité ha,b obtenue à la question b et
on obtient, pour t > 0 :

ha,b(t) = B(a, b)
Γ(a)Γ(b) ta+b−1e−t = 1

Γ(a + b) ta+b−1e−t,

et pour t ⩾ 0,
ha,b(t) = 0.

C’est exactement la densité d’une loi gamma de paramètre a + b.
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6. (a) On procède de manière identique à la loi gamma (question 3.a) et on montre que
• La fonction fa,b est définie sur R.
• La fonction fa,b est strictement positive sur ]0, 1[ et nulle sur son complémentaire (donc tous

comptes faits, positive ou nulle).
• Son intégrale entre −∞ et +∞ est en fait une intégrale entre 0 et 1 puisqu’elle est nulle en dehors

de [0, 1]. Puis∫ +∞

−∞
fa,b(x)dx =

∫ 1

0
fa,b(x)dx = 1

B(a, b)

∫ 1

0
xa−1(1 − x)b−1dx = B(a, b)

B(a, b) = 1.

(b) De la même façon que précédemment les intégrales à étudier pour l’espérance et le moment d’ordre
2 sont a priori des intégrales sur R, mais en fait dans notre cas des intégrales sur [0, 1] uniquement
puisque les fonctions à intégrer sont toujours nulles en dehors de [0, 1]. L’espérance et le moment d’ordre
2 apparaissent alors comme des intégrales de fonctions continues sur [0, 1], ce qui règle déjà le problème
de leur convergence. Pour le calcul, on a

E(X) = 1
B(a, b)

∫ 1

0
x · xa−1(1 − x)b−1dx = B(a + 1, b)

B(a, b) =
(b−1)!a!
(a+b)!

(b−1)!(a−1)!
(a+b−1)!

= a

a + b
.

(c) Et

E(X2) = 1
B(a, b)

∫ 1

0
xa+1(1 − x)b−1dx = B(a + 2, b)

B(a, b) =
(b−1)!(a+1)!

(a+b+1)!
(b−1)!(a−1)!

(a+b−1)!

= a(a + 1)
(a + b)(a + b + 1) .

Puis,

V (X) = a(a + 1)
(a + b)(a + b + 1) −

(
a

a + b)

)2
= a(a + 1)(a + b) − a2(a + b + 1)

(a + b)2(a + b + 1) = ab

(a + b)2(a + b + 1)

Deuxième Partie : Évolution de l’opinion d’un individu

7. (a) C’est une question de cours : E(Xi) = αi, et V ar(Xi) = αi(1 − αi).
(b) i. Comme indiqué, on procède par récurrence et on montre les propriétés

P (i) = Il existe une fonction gi telle que Xi = gi(Z0, · · · , Zi)”.

• Initialisation : La première étape est donnée par l’énoncé et on a X0 = Z0 de sorte que
g0(Z0) = Z0.

• Hérédité : Supposons la propriété P (i) vraie pour un entier i arbitraire :

Xi = gi(Z0, · · · , Zi)

pour une certaine fonction gi. Alors on a

Xi+1 = (1 − Zi+1)Xi + Zi+1(1 − Xi)

d’après le texte. Et donc

Xi+1 = (1 − Zi+1)gi(Z0, · · · , Zi) + Zi+1(1 − gi(Z0, · · · , Zi).

On constate que Xi+1 ne dépend que des variables Z0, · · · , Zi+1 (et que la dépendance est
donnée par Xi+1 = gi+1(Z0, · · · , Zi+1) avec

gi+1(Z0, · · · , Zi+1) = (1 − Zi+1)gi(Z0, · · · , Zi) + Zi+1gi(Z0, · · · , Zi)).

C’est donc que la propriété P (i + 1) est vraie.
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• Conclusion : Pour tout i ∈ N, il existe une fonction gi telle que Xi = gi(Z0, · · · , Zi)
ii. Puisque Xi−1 = gi−1(Z0, · · · , Zi−1), il suffit d’utiliser le lemme des coalitions pour montrer que

Xi−1 est indépendante de Zi.
(c) D’après ce qui précède (1 − Zi) est indépendante de Xi−1 et Zi est indépendante de (1 − Xi−1). Par

ailleurs l’espérance d’un produit de deux variables aléatoires indépendantes est égale au produit des
espérances (et l’espérance d’une somme est toujours égales à la somme des espérances). On a donc

αi = E(Xi)
= E(1 − Zi)E(Xi−1) + E(Zi)E(1 − Xi−1)
= (1 − E(Zi)) E(Xi−1) + E(Zi) (1 − E(Xi−1))
= (1 − pi)αi−1 + pi(1 − αi−1).

(d) On procède par récurrence sur les entiers i ⩾ k pour montrer que

P (i) : ”αi = 1
2”.

• Initialisation : Le premier indice i à considérer est l’indice i = k. Or on a supposé que pk = 1
2.

Ainsi
αk =

(
1 − 1

2

)
αi−1 + 1

2 (1 − αi−1) = 1
2 .

On a donc montré que P (k) est vraie.

• Hérédité : Supposons que αi = 1
2 pour un entier i arbitraire. Alors d’après ce qui précède, on a

aussi αi+1 = 1
2 (l’entier k de la question précédente est un entier quelconque et ce qu’on a démontré

s’applique en particulier à k = i). Donc P (i + 1) est vraie.

• Conclusion : ∀i ≥ k, αi = 1
2.

(e) • La suite (αi) est arithmético-géométrique définie par

αi = (1 − 2pi)αi−1 + pi

. On résout l’équation x = (1 − 2pi)x + pi. On obtien x = 1
2 . On pose alors la suite (βi)i∈N définie

par β = αi − 1
2. Alors

βi = αi − 1
2 = (1 − pi)αi−1 + pi(1 − αi−1) − 1

2
= αi−1 − pαi−1 + p − pαi−1 − 1

2 = (1 − 2p)αi−1 + p − 1
2

= (1 − 2p)
(

αi−1 −
1
2 − p

1 − 2p

)

= (1 − 2p)
(

αi−1 − 1
2

)
= (1 − 2p)βi−1

• La suite (βi)i∈N est donc géométrique de raison (1 − 2p) (1). On a donc

βi = (1 − 2p)i β0.

Or α0 = E(X0) = E(Z0) = p0 = p et on a β0 = p − 1
2. Finalement

βi = (1 − 2p)i

(
p − 1

2

)
.

(1). Ici on a fait l’hypothèse que 1 − 2p ̸= 0 (car p ̸= 1
2), ce qui signifie que la raison de la suite est non nulle donc que la suite est

non constante.
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• On a αi = βi + 1
2, c’est-à-dire

αi = (1 − 2p)i

(
p − 1

2

)
+ 1

2 .

• La suite (αi)i∈N converge si et seulement si la suite géométrique de terme général (1 − 2p)i converge,
c’est-à-dire si et seulement si la raison 1 − 2p de cette suite est dans l’intervalle ] − 1, 1[. Or

−1 < 1 − 2p < 1 ⇔ −2 < −2p < 0 ⇔ 0 < 2p < 2 ⇔ 0 < p < 1.

C’est l’hypothèse qui est faite sur p et on conclut que la suite (αi)i∈N converge toujours. Une suite
géométrique convergente converge vers 0 et on conclut finalement que

lim
i→+∞

αi = 1
2 .

8. (a) C’est très classique (on rappelle qu’on suppose tout au long du sujet que les bibliothèques usuelles sont
importées) :

de f simul_Z (p) :
i f rd . rand()<p :

re turn 1
e l s e :

r e turn 0

(b)

de f Suite_X (n) :
X=[simul_Z (p ( 0 ) ) ]
f o r k in range (n) :

X. append((1−simul_Z (p( i ) ) ) ∗X[ i −1] + simul_Z (p( i ))∗(1 −X[ i −1])
re turn X

9. Avant toute chose, remarquons que l’événement Ai est aussi égal à l’événement [Zi = 0].
(a) Prenons i ̸= j. D’après la remarque précédente, P (Ai ∩ Aj) = P ((Zi = 0) ∩ (Zj = 0)) = P (Zi =

0)P (Zj = 0) car les variables Zi sont indépendantes. On retrouve bien

P (Ai ∩ Aj) = P (Ai)P (Aj).

(b) Dans le même esprit,
P (Ai) = P (Zi = 0) = 1 − pi.

(c) • Si Bn,k+1 se réalise alors, pour tout i ∈ Jn, n + k + 1K, Xi = Xn et en particulier Xi = Xn pour
tous les indices i ∈ Jn, n + kK, c’est-à-dire que Bn,k se réalise. On a donc Bn,k+1 ⊂ Bn,k.

• On a évidemment

Bn,k = [Xn = Xn+1] ∩ · · · ∩ [Xn+k−1 = Xn+k] =
n+k⋂

i=n+1
Ai.

• Puisque les événements Ai sont indépendants, on calcule la probabilité de leur intersection par le
produit des probabilités : on a bien

P (Bn,k) = P

(
n+k⋂

i=n+1
Ai)
)

=
n+k∏

i=n+1
P (Ai) =

n+k∏
i=n+1

(1 − pi).
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(d) • On a
Bn =

⋂
k⩾0

Bn,k.

Or la suite des événements (Bn,k)k∈N est une suite décroissante. On a donc

P

(+∞⋂
k=0

Bn,k

)
= lim

k→+∞
P (Bn,k).

• Puisque l’événement Bn signifie que la suite (Xi)i est constante à partir du moment n, on a bien
Bn ⊂ Bn+1 (si une suite est constante à partir du moment n, elle est constante à partir du moment
n + 1).

(e) Cette fois la suite (Bn)n est croissante et donc

P (B) = P

(⋃
n⩾0

Bn

)
= lim

n→+∞
P (Bn).

10. (a) Si la série
∑
i⩾0

pi est convergente, alors en particulier, la suite (pi)i tend vers 0. Puis ln(1 − pi) converge

par composition vers ln(1) = 0. Donc
lim

i→+∞
xi = 0.

On a donc, puisque lim pi = 0, ln(1 − pi) ∼i→+∞ −pi, puis xi ∼i→+∞ pi. Par ailleurs pi ⩾ 0 (c’est une
probabilité). Et aussi 1 − pi ⩽ 1 donc ln(1 − pi) ⩽ 0 et finalement xi ⩾ 0. On peut donc appliquer
le théorème de comparaison par équivalence pour les séries à termes positifs et conclure que

∑
i⩾0

xi

converge aussi.
(b) On a

ln (P (Bn,k)) = ln
(

n+k∏
i=n+1

(1 − pi)
)

=
n+k∑

i=n+1
ln(1 − pi)

en utilisant le calcul de P (Bn,k) de la question 9.c(iii). On va maintenant passer à la limite dans les deux
membres de cette égalité. D’une part, lim

k→+∞
P (Bn,k) = P (Bn) et comme la fonction ln est continue, on

a aussi
lim

k→+∞
ln(P (Bn,k)) = ln(P (Bn)).

D’autre part, puisque la série converge
∑

i

ln(1 − pi) converge d’après la question précédente (si une

série converge, son opposé aussi), alors la série
∑

i⩾n+1
ln(1 − pi) converge et sa somme est

+∞∑
i=n+1

ln(1 − pi) = −
+∞∑

i=n+1
xi. On conclut donc, par passage à la limite lorsque k tend vers +∞ que

ln(P (Bn)) = −
+∞∑

i=n+1
xi,

ou encore en prenant l’exponentielle des deux membres :

P (Bn) = exp
(

−
+∞∑

i=n+1
xi

)
.
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(c) On fait maintenant tendre n vers +∞ dans les deux membres de l’égalité précédente. D’après la question
9.e, on a

lim
n→+∞

P (Bn) = P (B).

Pour le deuxième membre, il suffit de constater que
+∞∑

i=n+1
xi est le reste d’une série convergente, et ce

reste tend vers 0 lorsque n → +∞. Ainsi

lim
n→+∞

+∞∑
i=n+1

xi = 0.

En composant par la fonction exp qui est continue, on obtient

lim
n→+∞

exp
(

−
+∞∑

i=n+1
xi

)
= exp(0) = 1.

Donc, par passage à la limite dans l’égalité de la question précédente, on obtient

P (B) = 1

Troisième Partie : Urne de Pòlya
11. (a) L’événement [Rn = i] signifie qu’il y a i boules rouges dans l’urne après n tirages, et donc r+v+n boules

en tout d’après la question précédente. Puisque la probabilité de piocher chaque boule est uniforme, la
probabilité de piocher une boule rouge dans une telle urne est égale au nombre de boules rouges, divisé
par le nombre totale de boules, c’est-à-dire

P[Rn=i](An+1) = i

r + v + n
.

On a
P[Rn=i](Rn+1 = i + 1) = P[Rn=i](An+1) = i

r + v + n
.

Puis

P[Rn=i](Rn+1 = i) = P[Rn=i](An+1) = 1 − P[Rn=i](An+1) = 1 − i

r + v + n
= r + v + n − i

r + v + n
.

(b)

de f Polya ( r , v , n ) :
R=[ r ]
f o r k in range (n) :

i f rd . rand()<R[ k ] / ( r+v+k ) :
R. append (R[ k ]+1)

e l s e :
R. append (R[ k ] )

r e turn R

12. (a) i. Le protocole expérimental de la (n + 1)-ème étape ne dépend que de la composition de l’urne après
le n-ième tirage, et pas de la façon dont l’urne s’est remplie au cours du temps. C’est exactement
ce que signifie cette formule. (2)

(2). Peut-être faudrait-il trouver un argument plus convaincant...
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ii. On raisonne par récurrence sur n et on montre les propriétés :

P (n) : ”∀(s1, · · · , sn), P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn))

= (r + sn − 1)!
(r − 1)!

(v + n − sn − 1)!
(v − 1)!

(r + v − 1)!
(r + v + n − 1)!”.

• initialisation :

On a,
– Si s1 = 0, d’une part

P (R1 = r + s1) = P (R1 = r) = P (V1) = v

r + v

et d’autre part

(r + s1 − 1)!
(r − 1)!

(v + r − s1 − 1)!
(v − 1)!

(r + v − 1)!
r + v + n − 1)! = (r − 1)!

(r − 1)!
(v + 1 − 1)!

(v − 1)!
(r + v − 1)!

(r + v + 1 − 1)! = v

r + v

– Si s1 = 1, d’une part

P (R1 = r + s1) = P (R1 = r + 1) = P (R1) = r

r + v

et d’autre part

(r + s1 − 1)!
(r − 1)!

(v + r − s1 − 1)!
(v − 1)!

(r + v − 1)!
r + v + n − 1)! = (r)!

(r − 1)!
(v − 1)!
(v − 1)!

(r + v − 1)!
(r + v + 1 − 1)! = r

r + v

La formule est donc valable pour n = 1 et pour toute valeur de s1.
• Hérédité : on suppose la propriété vraie au rang n et on calcule la probabilité

P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn) ∩ (Rn+1 = r + sn+1))

avec la formule des probabilités composées :

P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn) ∩ (Rn+1 = r + sn+1))
= P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn))·
× [P[(R1=r+s1)∩(R2=r+s2)∩···∩(Rn=r+sn)](Rn+1 = r + sn+1)
= P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn)) · P[Rn=r+sn](Rn+1 = r + sn+1)

d’après la question précédente. On utilise alors l’hypothèse de récurrence :

P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn) ∩ (Rn+1 = r + sn+1))

= (r + sn − 1)!
(r − 1)!

(v + n − sn − 1)!
(v − 1)!

(r + v − 1)!
(r + v + n − 1)! · P[Rn=r+sn](Rn+1 = r + sn+1).

Pour montrer la propriété au rang n + 1, on distingue deux cas, selon si sn+1 = sn ou sn+1 =
sn + 1. Dans le cas où sn+1 = sn, on a

P[Rn=r+sn](Rn+1 = r + sn+1) = P[Rn=r+sn](Rn+1 = r + sn) = P[Rn=sn](An+1) = v + n − sn

r + v + n
.

On reporte la valeur de la probabilité conditionnelle dans le calcul de [P ((R1 = r + s1) ∩ (R2 =
r + s2) ∩ · · · ∩ (Rn = r + sn) ∩ (Rn+1 = r + sn)) (on rappelle que sn+1 = sn ici) et on trouve

P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn) ∩ (Rn+1 = r + sn))

= (r + sn − 1)!
(r − 1)!

(v + n − sn − 1)!
(v − 1)!

(r + v − 1)!
(r + v + n − 1)! · v + n − sn

r + v + n

= (r + sn − 1)!
(r − 1)!

(v + n − sn)!
(v − 1)!

(r + v − 1)!
(r + v + n)!
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ce qui est la formule attendue au rang n + 1 dans ce cas (sn+1 = sn).
On traite enfin le cas où sn+1 = sn + 1. On a dans un premiers temps :

P[Rn=r+sn](Rn+1 = r + sn+1) = P[Rn=r+sn](Rn+1 = r + sn + 1) = P[Rn=sn](An+1) = r + sn

r + v + n
.

On reporte la valeur de la probabilité conditionnelle dans le calcul de [P ((R1 = r + s1) ∩ (R2 =
r + s2) ∩ · · · ∩ (Rn = r + sn) ∩ (Rn+1 = r + sn)) (on rappelle que sn+1 = sn + 1 ici) et on trouve

P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn) ∩ (Rn+1 = r + sn + 1))

= (r + sn − 1)!
(r − 1)!

(v + n − sn − 1)!
(v − 1)!

(r + v − 1)!
(r + v + n − 1)! · r + sn

r + v + n

= (r + sn)!
(r − 1)!

(v + n − (sn + 1))!
(v − 1)!

(r + v − 1)!
(r + v + n)!

ce qui est la formule attendue au rang n + 1 dans ce cas (sn+1 = sn + 1).

(b) Nous avions établi que B(a, b) = (b − 1)!(a − 1)!
(a + b − 1)! (pour des entiers comme ce sera le cas d’application

ici, c’est la question 4.d(ii) ; pour des valeurs non entières, il faut remplacer la fonction ! par la fonction
gamma, comme dans la question 5.c mais ce n’est pas ce qui sera utilisé ici). Ainsi

B(r + sn, v + n − sn)
B(r, v) =

(r+sn−1)!(v+n−sn−1)!
(r+sn+v+n−sn−1)

(r−1)!(v−1)!
(r+v−1)!

= (r + sn − 1)!
(r − 1)!

(v + n − sn − 1)!
(v − 1)!

(r + v − 1)!
(r + v + n − 1)! ,

ce qui coïncide avec l’expression de

P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + sn)).

(c) i. sn = k peut aussi s’écrire
n−1∑
i=1

(si+1 − si) + s1 = k.

Or chacun des n nombres si+1 − si pour i ∈ J1, n − 1K et s1 peut prendre la valeur 0 ou 1. Pour que
sn = k, il faut donc qu’il y ait k de ces n nombres qui prennent la valeur 1 et n − k qui prennent

la valeur 0 : il faut donc choisir k nombres parmi les n et il y a
(

n

k

)
possibilités.

ii. On applique la formule des probabilités totales au système complet d’événements

(R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn−1 = r + sn−1),

avec tous les choix possibles de s1, · · · , sn−1 tels que sn = k. D’après la question précédente, il y

a
(

n

k

)
événements dans notre SCE et d’après la question d’encore avant, tous ces événements ont

la même probabilité B(r + k, v + n − k)
B(r, v) . Ainsi

P (Rn = r + k) =
∑

s1,···sn−1 tq sn=k

P ((R1 = r + s1) ∩ (R2 = r + s2) ∩ · · · ∩ (Rn = r + k))

=
∑

s1,···sn−1 tq sn=k

B(r + k, v + n − k)
B(r, v)

=
(

n

k

)
B(r + k, v + n − k)

B(r, v) .
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iii. On part du membre de droite(
n

k

)∫ 1

0
xk(1 − x)n−kfr,v(x)dx =

(
n

k

)∫ 1

0
xk(1 − x)n−k 1

B(r, v)xr−1(1 − x)v−1dx

=
(

n
k

)
B(r, v)

∫ 1

0
xk+r−1(1 − x)n−k+v−1dx

=
(

n

k

)
B(k + r, n − k + v)

B(r, v)

, ce qui est bien la formule obtenue pour P (Rn = r + k).
(d) On peut interpréter la formule intégrale de la manière suivante, pour faire apparaître la loi binomiale

W x
n de paramètres n et x :(

n

k

)∫ 1

0
xk(1 − x)n−kfr,v(x)dx =

∫ 1

0

(
n

k

)
xk(1 − x)n−kfr,v(x)dx =

∫ 1

0
P (W x

n = k)fr,v(x)dx.

Autrement dit, en faisant le changement d’indices j = r + k, on a

P (Rn = j) =
∫ 1

0
P (W x

n = j − r)fr,v(x)dx.

Puis, comme Rn est une variable discrète,

P (Rn ⩽ l) =
l∑

j=0
P (Rn = j).

En remplaçant chaque valeur de P (Rn = j) par la formule intégrale précédente, on obtient

P (Rn ⩽ l) =
l∑

j=0

∫ 1

0
P (W x

n = j − r)fr,v(x)dx.

Enfin, par linéarité de l’intégrale,

P (Rn ⩽ l) =
∫ 1

0

l∑
j=0

P (W x
n = j − r)fr,v(x)dx.

Puisque W x
n est elle-même une variable discrète, on reconnaît dans l’intégrale l’expression de P (W x

n ⩽
l − r), ce qui donne finalement

P (Rn ⩽ l) =
∫ 1

0
P (W x

n ⩽ l − r)fr,v(x)dx.

13. (a) E(W x
n ) = nx (sans commentaires...)

(b) On a d’après le cours var(W x
n ) = nx(1 − x). Nous allons donc montrer que pour tout x ∈ [0, 1],

x(1 − x) ⩽ 1
4. Pour cela, posons f(x) = x(1 − x) pour x ∈ [0, 1]. On a

f ′(x) = 1 − 2x

de sorte que la dérivée s’annule en 1/2 et les variations de f montrent facilement que f(1/2) est un
maximum pour f . Or f(1/2) = 1/4 et on obtient bien l’inégalité voulue.

(c) D’après l’inégalité de Bienaymé-Tchebychev, on a, pour tout ε > 0,

P (|W x
n − nx| > ε) ⩽ V (W x

n )
ε2 .

En réinjectant la majoration de la variance de la question précédente, on obtient bien

P (|W x
n − nx| > ε) ⩽ n

4ε2 .
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(d) L’événement [|W x
n − nx| > ε] peut s’écrire

[|W x
n − nx| > ε] = [W x

n − nx > ε] ∪ [W x
n − nx < −ε].

(rappel |y| > ε ⇔ y > ε ou y < −ε). On a donc

[W x
n − nx < −ε] ⊂ [|W x

n − nx| > ε]

et en particulier
P ([W x

n − nx < −ε]) ⩽ P ([|W x
n − nx| > ε]) ,

ce qui signifie, avec la majoration précédente que

P ([W x
n − nx < −ε]) ⩽ n

4ε2 .

On applique cette inégalité à ε = n2/3. On a

P ([W x
n − nx < −ε]) = P

(
[W x

n < nx − n2/3]
)

et
n

4ε2 = n

4n4/3 = 1
4n−1/3,

donc
P
(

[W x
n < nx − n2/3]

)
⩽

1
4n−1/3,

ce qu’on voulait.
On procède à l’identique pour la deuxième majoration

P
(

[W x
n > nx + n2/3]

)
⩽

1
4n−1/3,

en utilisant cette fois que
[W x

n − nx > ε] ⊂ [|W x
n − nx| > ε]

puis en l’appliquant aussi à ε = n2/3.
(e) Remarquons que

x ⩾
m

n
+ n−1/3 ⇔ nx ⩾ m + n2/3

⇔ m ⩽ nx − n2/3.

Ainsi, si x ⩾
m

n
+ n−1/3, alors

[W x
n < m] ⊂ [W x

n < nx − n2/3]

et
P (W x

n < m) ⩽ P (W x
n < nx − n2/3) ⩽ 1

4n−1/3.

On procède de même pour la deuxième inégalité (en utilisant la deuxième inégalité de la question
précédente). On montre successivement que

x ⩽
m

n
− n−1/3 ⇔ m ⩾ nx + n2/3,

puis donc, pour x ⩽
m

n
− n−1/3,

[W x
n > m] ⊂ [W x

n > nx − n2/3]

et
P (W x

n > m) ⩽ P (W x
n > nx + n2/3) ⩽ 1

4n−1/3.
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14. C’est la vraie question difficile de l’épreuve. L’hypothèse sur la limite de mn

n
ne sert pas à grand chose dans

les questions a,b,c, si ce n’est à garantir que les deux nombres mn

n
− n−1/3 et mn

n
+ n−1/3 sont contenus

dans l’intervalle [0, 1] et que m est un entier plus petit que n (ce qui est indispensable pour utiliser les
majorations de la question 14.e), au moins à partir d’un certain rang N (ce qui suffit pour ce que nous
allons faire puisqu’on cherche à faire tendre n vers +∞). Dans toutes les parties de cette question, nous
supposerons donc que n ⩾ N .

(a) Puisqu’on intègre sur l’intervalle [mn

n
+ n−1/3, 1], tous les x considérés ici vérifient x ⩾

mm

n
+ n−1/3.

On a donc
0 ⩽ P

(
[W x

n < nx − n2/3]
)
⩽

1
4n−1/3

, puis
0 ⩽ P

(
[W x

n < nx − n2/3]
)
⩽

1
4n−1/3frv (x)

car fr,v est une densité de probabilité donc positive. Par positivité de l’intégrale

0 ⩽
∫ 1

mn
n

+n−1/3
P (W x

n ⩽ mn)fr,v(x)dx ⩽
n−1/3

4

∫ 1

mn
n

+n−1/3
fr,v(x)dx.

Or, à nouveau parce que fr,v est positive et en utilisant la positivité de l’intégrale, on a∫ 1

mn
n

+n−1/3
fr,v(x)dx ⩽

∫ 1

0
fr,v(x)dx = 1.

On obtient donc la majoration

0 ⩽
∫ 1

mn
n

+n−1/3
P (W x

n ⩽ mn)fr,v(x)dx ⩽
n−1/3

4 .

On fait enfin tendre n vers +∞. Les deux membres extrémaux de l’inégalité tendent vers 0 et on en
déduit par le théorème des gendarmes que

lim
n→+∞

∫ 1

mn
n

+n−1/3
P (W x

n ⩽ mn)fr,v(x)dx = 0.

(b) La question est particulièrement difficile, il faut exploiter le fait que l’on intègre une fonction bornée
sur un intervalle qui se rétrécit lorsque n augmente. On a d’une part

0 ⩽ P (W x
n ⩽ mn) ⩽ 1

(comme toute probabilité). On pourrait aussi montrer que pour tout x ∈ [0, 1],

0 ⩽ fr,v(x) ⩽ 1,

puis conclure par croissance de l’intégrale. Cette majoration n’est pas du tout triviale, et le fait que fr,v

soit une densité de probabilité n’aide en rien puisqu’une densité peut (exceptionnellement) prendre des
valeurs très grande (penser à une gaussienne de très petite variance par exemple qui prend des valeurs
très grande autour de la moyenne).
Voici une autre façon, plus abstraite mais légèrement plus efficace de répondre à la question. On note
Fr,v la fonction de répartition d’une loi de probabilité de densité fr,v. Après avoir encadré la probabilité
P (W x

n ⩽ mn) entre 0 et 1, on a donc, par positivité de l’intégrale,

0 ⩽
∫ mn

n
+n−1/3

mn
n

−n−1/3
P (W x

n ⩽ mn)fr,v(x)dx ⩽
∫ mn

n
+n−1/3

mn
n

−n−1/3
fr,v(x)dx = Fr,v

(mn

n
+ n−1/3

)
−Fr,v

(mn

n
− n−1/3

)
.
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Or Fr,v est une fonction de répartition d’une variable à densité, et c’est en particulier une fonction
continue. Une fonction continue F en ℓ vérifie la propriété suivante : pour toute suite (un) convergente
vers ℓ,

lim
n→+∞

F (un) = F (ℓ).

C’est ce qu’on utilise ici pour calculer la limite du membre de droite de la précédente inégalité. On a

lim
n→+∞

mn

n
+ n−1/3 = lim

n→+∞

mn

n
− n−1/3 = t.

Donc par continuité de Fr,v :

lim
n→+∞

Fr,v

(mn

n
+ n−1/3

)
− Fr,v

(mn

n
− n−1/3

)
= Fr,v(t) − Fr,v(t) = 0.

On conclut maintenant sur la limite de l’intégrale par le théorème des gendarmes.
(c) C’est exactement le même raisonnement que pour la question a.
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