
Chapitre n°12

Convergences et approximations

Dans tout le chapitre on ne s’intéresse qu’à des variables aléatoires réelles discrètes ou bien à densité.

I. Inégalités probabilistes

Si X est une variable aléatoire réelle à valeurs positives admettant une espérance alors

∀a ∈ R∗
+ P(X ⩾ a) ⩽ E(X)

a

Théorème 1.1 — Inégalité de Markov

R1 – On sait déjà que t 7→ P (X ≥ t) est décroissante. Cette inégalité permet de voir que la décroissance se fait à une
vitesse d’au moins 1/t.

R2 – En combinant l’inégalité de Markov (appliquée à |X|r ) avec la croissance de la fonction t 7→ tr sur R+, on voit
que, si X admet un moment d’ordre r, alors

∀t > 0 P (|X| ≥ t) ≤ E (|X|r)
tr

Ainsi, plus la variable admet des moments d’ordres élevés, plus les queues de probabilités décroissent vite.

Remarques :

Démonstration. Nous allons démontrer ce résultat dans deux situations différentes, selon que X soit une variable
aléatoire discrète ou à densité. On suppose dans tous les cas que X est positive, autrement dit X(Ω) ⊂ R+, et que X
admet une espérance. Soit t > 0.

• Si X est une variable aléatoire discrète, alors

E(X) =
∑

k∈X(Ω)

kP (X = k) =
∑
k<t

kP (X = k) +
∑
k≥t

kP (X = k)

≥
∑
k≥t

kP (X = k) (car k ≥ 0)

≥ t
∑
k≥t

P (X = k) = tP (X ≥ t)

et on a bien P (X ≥ t) ≤ E(X)
t

• Si X est une variable à densité et que f est une densité de X alors, comme X est à valeurs positives, f(x) = 0
si x < 0. Il suit que

E(X) =
∫ +∞

−∞
xf(x)dx =

∫ +∞

0
xf(x)dx =

∫ t

0
xf(x)dx +

∫ +∞

t

xf(x)dx

≥
∫ +∞

t

xf(x)dx ≥ t

∫ +∞

t

f(x)dx = tP (X ≥ t)

et on a bien P (X ≥ t) ≤ E(X)
t
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Soit X une variable aléatoire réelle admettant un moment d’ordre 2 alors

∀ε > 0 P(|X − E(X)| ⩾ ε) ⩽ V (X)
ε2

Théorème 1.2 — Inégalité de Bienaymé-Tchebychev

Pour rappel, la variable centrée X − E(X) est centrée et représente la déviation de X par rapport à son espérance. Ce
théorème donne une majoration précise de la probabilité de cette déviation : X dévie de son espérance de plus de ε avec
une probabilité décroissante à vitesse 1/ε2 (à une constante près). Le résultat n’a d’intérêt que pour ε grand.

Remarque :

Démonstration. Soit X une variable aléatoire admettant un moment d’ordre 2. Alors X admet une variance et donc
une espérance.
On applique l’inégalité de Markov à la variable (X − E(X))2, qui est bien positive et admet une espérance elle aussi.
Alors, par croissance de t 7→ t2 sur R+, pour tout ε > 0 :

P (|X − E(X)| ≥ ε) = P
((

X − E(X)2) ≥ ε2) ≤
E
(
(X − E(X))2)

ε2 = V (X)
ε2

1. Soit X ↪→ U([0; 1]).
(a) Rappeler la valeur de E(X) et de V (X). Que vaut P (|X − E(X)| > t) pour t ≥ 1/2 ?
(b) Exprimer l’inégalité de Bienaymé-Tchebychev.

2. Soit X ↪→ E(1).
(a) Rappeler la valeur de E(X) et de V (X). Que vaut P (|X − E(X)| > t) pour t > 1 ?
(b) Exprimer l’inégalité de Bienaymé-Tchebychev.

Exercice 1

Soient X1, X2, . . . , Xnn v.a. (mutuellement) indépendantes de même loi B(p). Montrer que

P

(∣∣∣∣∣ 1n
n∑

k=1
Xk − p

∣∣∣∣∣ ≥ t

)
≤ p(1 − p)

nt2

Exercice 2

On lance plusieurs fois une pièce parfaitement équilibrée. Les lancers sont indépendants. Combien de lancers
faut-il effectuer pour pouvoir affirmer, avec un risque d’erreur inférieur à 5%, que la fréquence d’apparition du
Pile au cours de ces lancers sera comprise entre 49% et 51% ?

Exercice 3
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II. La loi faible des grands nombres

Soit (Xn) une suite de v.a. (mutuellement) indépendantes, admettant une même espérance m et une même
variance σ2. Soit

X̄n = X1 + X2 + . . . + Xn

n

Alors,

∀ε > 0, lim
n→+∞

P
(∣∣X̄n − m

∣∣ ≥ ε
)

= 0 et lim
n→+∞

P
(∣∣X̄n − m

∣∣ < ε
)

= 1

Théorème 2.1 — Loi faible des grands nombres.

Autrement dit, ce théorème signifie que la moyenne de n variables aléatoires indépendantes suivant une même loi converge
vers leur espérance commune.

Remarque :

Démonstration. La linéarité de l’espérance et les propriétés de la variance donnent :

E
(
X̄n

)
= m, V (X̄n) = σ2

n

On applique l’inégalité de Bienaymé-Tchebychev, et on obtient :

P
(∣∣X̄n − m

∣∣ ≥ ε
)

= P
(
| X̄n − E(X̄n) |≥ ε

)
≤

V
(
X̄n

)
ε2 = σ2

nε2 −→
n→+∞

0

Avec Python :
On cherche à illustrer la loi des faible des grands nombres. On va commencer par calculer la moyenne de la simulation
de n variables aléatoires qui suivent une loi uniforme sur [0, 1[. Puis on va recommencer cette expérience un grand
nombre de fois et on a va visualiser ces résultats à l’aide de hist

1 n=100 #celui qui apparait dans le théorème
2 L=1000 # nombre de repetitions
3
4 Moyennes =[]
5 for i in range (L):
6 R =.........
7 Moyennes . append (.......)
8 plt.xlim (0 ,1)
9 plt.hist (...........)

10 plt.show ()

Deux illustrations de la loi des grands nombres avec la loi uniforme

n = 10 n = 1000
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Modifier le programme précédent pour qu’il simule la même expérience aléatoire avec la loi exponentielle de
paramètre 2.

Exercice 4

III. Convergences

III. 1 Convergence en loi

Soient (Xn) une suite de v.a. et X une autre v.a. On note respectivement FXn
et FX les fonctions de répartition

de Xn et de X. On dit que Xn converge en loi vers X, si, pour tout réel t où la fonction FX est continue, on a

lim
n→+∞

FXn(t) = FX(t)

On note Xn
L−→ X.

Définition 3.1

R1 – Il faut bien faire attention aux x et n.
R2 – Pour montrer qu’une suite de v.a. converge en loi, on fixe d’abord un t (parmi les points où FX est continue) et on

fait ensuite tendre n vers l’infini.
R3 – Si la variable X est à densité, sa fonction de répartition FX est continue et la convergence ci-dessous doit donc

avoir lieu en tout point t ∈ R.
R4 – Certaines suites de v.a. ne convergent pas. On gardera également à l’esprit qu’une suite de v.a. discrètes peut

converger vers une v.a. à densité et inversement.

Remarques :

Soit (Xn) une suite de v.a. telle que, pour tout n ∈ N∗, Xn ↪→ E
(

1 + 1
n

)
. Montrer que (Xn) converge en loi vers

une v.a. Z à déterminer.

Exercice 5

Soient n ∈ N∗, Xn ↪→ U(J0; nK) et Yn = 1
n

Xn.

1. Montrer que

FXn
(t) =


0, si t < 0

⌊t⌋ + 1
n + 1 , si t ∈ [0; n]

1, si t > 1

2. En déduire l’expression de FYn
(t).

3. Conclure que Yn
L−→ Z, où Z ↪→ U([0; 1]).

Exercice 6

Soit Xn ↪→ U([n; n + 1]). Montrer que (Xn) ne converge pas en loi.

Exercice 7
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La proposition suivante est une conséquence des définitions de fonction de répartition et de convergence en loi.

Soit (Xn) une suite de v.a. telle que Xn
L−→ X. Pour tous réels a, b points de continuité de FX avec a < b, on a

lim
n→+∞

P (a < Xn ≤ b) = P (a < X ≤ b)

Proposition 3.2

Soient X une v.a. discrète telle que X(Ω) ⊂ Z et (Xn) une suite de v.a. discrètes avec la même propriété. Alors,(
Xn

L−→ X
)

⇐⇒
(

∀k ∈ N, lim
n→+∞

P (Xn = k) = P (X = k)
)

Proposition 3.3 — Caractérisation par les varaibles aléatoires à support dans Z.

Soit (Xn) une suite de v.a. t.q. : ∀n ∈ N∗, Xn ↪→ B
(

ln
(

2 + 1
n

))
. Montrer que Xn

L−→ X, où X ↪→ B(ln(2)).

Exercice 8

III. 2 Convergence de Binomiales vers Poisson

Soit λ ∈ R∗
+. Soit (Xn)n∈N∗ une suite de v.a. telle que Xn ↪→ B(n, λ/n) alors (Xn)n∈N∗ converge en loi vers une

variable aléatoire suivant la loi de Poisson P(λ) .

Théorème 3.4

Convergence des lois binomiales B(n, 4/n) vers la loi de Poisson P(4)

B(5, 4/5) B(25, 4/25)

B(50, 4/50)
P(4)
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Programme Python à compléter
11 lam =4
12 n=50
13 N=1000
14
15 R=rd. binomial (.............)
16 plt.hist ()
17 plt.show ()
18
19 ##
20 R=rd. poisson (.......)
21 plt.hist ()
22 plt.show ()

La loi de Poisson est aussi appelée loi des évènements rares, et ce théorème vient illustrer cette propriété. En effet, on
constate qu’une loi de Poisson permet d’approcher la loi qui modélise un processus de comptage de succès lorsque la
probabilité du succès est très petite devant le nombre d’observations, autrement dit que le succès devient un évènement
rare.

Remarque :

IV. Théorème Central Limite

IV. 1 Préliminaires

Si X ↪→ N (m, σ2) et si a et b sont deux réel a > 0 et b deux réels alors la variable Y = aX + b vérifie

Y ↪→ N (am + b, a2σ2)

Proposition 4.1 — Transformation affine d’une variable aléatoire suivant la loi N (0, 1).

Pour centrer et réduire une variable aléatoire : Soit X une variable aléatoire admettant un moment d’ordre 2 (elle
admet donc une espérance µ et un écart-type σ). en posant

X∗ = X − µ

σ

On constate que
E(X∗) = 0 V (X∗) = 1

Donc X∗ est une variable aléatoire réduite et centrée !

Méthode :

Démonstration. En utilisant la linéarité de l’espérance

E(X∗) = E

(
X − µ

σ

)
= E(X) − µ

σ
= µ − µ

σ
= 0

et en utilisant la formule V (aX + b) = a2V (X)

V (X∗) = V

(
X − µ

σ

)
= V (X)

σ2 = 1

En combinant la stabilité des lois normales pour les transformations affines et la remarque précédente, on peut
transformer toute loi normale en une loi normale réduite et centrée.
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Pour se ramener à une loi normale réduite-centrée :
Soit X ↪→ N (µ, σ2) on pose

X∗ = X − µ

σ

D’après les résultats précédents
X∗ ↪→ N (0, 1)

Réciproquement on peut écrire
X = σX∗ + µ

Méthode :

Utilisation des tables de la loi normale (cf. Annexe) On considère

X ↪→ N (2, 4)

et on voudrait avoir une approximation de
P(3 ⩽ X ⩽ 4)

Donc

P(3 ⩽ X ⩽ 4) = P(1 ⩽ X − 2 ⩽ 2)

= P
(

1
2 ⩽ X∗ ⩽ 1

)
= Φ(1) − Φ

(
1
2

)
définition de la fonction de répartition

≈ 0, 8413 − 0, 6915 En lisant sur une table
≈ 0, 1498

Exemple :

Soit Y ↪→ N (1, 3), donner une approximation de P(1 ⩽ X ⩽
√

3) On donne 1/
√

3 ≈ 0, 577.

Exercice 9

Cas d’une somme et d’une moyenne :

Soit X1 X2,. . . Xn des variables aléatoires indépendantes de même espérance µ et de même écart-type σ. On pose

Sn = X1 + X2 + · · · + Xn et Xn = X1 + X2 + · · · + Xn

n

alors les variables aléatoires centrées et réduites associées sont

S∗
n = Sn − nµ

σ
√

n
et Xn

∗ =
√

n
Xn − µ

σ

Démonstration.
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IV. 2 Le théorème

Le résultat suivant est un théorème fondamental, qui peut être vu comme un aboutissement de ce cours de mathé-
matiques appliquées. Il illustre notamment le rôle crucial de la loi normale N (0, 1) en statistique.

Soit (Xn) une suite de v.a. indépendantes de même loi, d’espérance (commune) finie m et de variance (commune)
finie (et non nulle) σ2. Pour n ∈ N∗, on note

Sn =
n∑

k=1
Xk, X̄n = Sn

n

et

S∗
n = Sn − E (Sn)

σ (Sn) = Sn − nm

σ
√

n
=

√
n
(
X̄n − m

)
σ

=
X̄n − E

(
X̄n

)
σ
(
X̄n

) = X̄∗
n

Alors,

S∗
n

L−→ Z et X̄∗
n

L−→ Z, où Z ↪→ N (0, 1).

En particulier, notant Φ la fonction de répartition de la loi normale N (0, 1), on a, pour tous réels a, b avec a < b,

lim
n→+∞

P (a < S∗
n ≤ b) = Φ(b) − Φ(a) = 1√

2π

∫ b

a

e−t2/2 dt

Théorème 4.2 — Théorème Central Limite (TCL)

R1 – Autrement dit, les variables Sn et Xn convergent en loi vers une loi normale. La somme (ou la moyenne) de n
variables aléatoires indépendantes de même loi se comporte de manière approximativement gaussienne si n est
suffisamment grand.

R2 – Le TCL vient préciser le résultat donné par la loi faible des grands nombres. On retrouve que la moyenne empirique
converge vers la moyenne théorique, et le TCL précise que la convergence a lieu à vitesse de 1/

√
n.

Remarques :

Soit (Un) une suite de v.a. indépendantes telle que, pour tout n ∈ N∗, Un ↪→ U
([

−1
2 ; 1

2

])
. Montrer que√

12
n

n∑
k=1

Uk
L−→ U, où U ↪→ N (0, 1)

Exercice 10

IV. 3 Une Illustration avec Python

Code Python à compléter :

23 def phi(x):
24 return ...
25 #tracé de la gaussienne
26 x=np. arange ( -5 ,5 ,0.01)
27 y=phi(x)
28 plt.plot(x,y,color=’red ’,linewidth =2)
29
30 #tracé de l’histogramme
31 n=50 # celui qui apparait dans la limite
32 L =1000000 # nombre de simulation
33
34
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35
36 sigma =...
37 moyenne =...
38 Xbarre =[]
39 for i in range(L):
40 Xbarre . append (np.mean(rd. random (n)))
41
42
43 XbarreE =...
44
45
46
47 plt.hist( XbarreE )#plus compliqu é en réalité
48 plt.show ()

Illustration du théorème central limite

n = 1 n = 3

n = 8 n = 50

On suppose que l’intervalle de temps entre deux voitures successives à un passage à niveau (peu fréquenté) suit
une loi exponentielle de moyenne 30 minutes. On suppose de plus qu’il y a indépendance entre les intervalles de
temps séparant les instants de passage de voitures. Calculons (une valeur approchée) de la probabilité qu’il y ait
plus de 50 voitures qui empruntent le passage à niveau une journée donnée.
On note Xi l’intervalle exprimé en minutes séparant le véhicule i − 1 du véhicule i,X1 représentant l’intervalle
entre le début de la journée et le temps de passage de la première voiture.
Les (Xi)i⩾1 forment une suite de variable aléatoires indépendantes et de même loi exponentielle de paramètre
1
30 et vérifient dont

∀i ∈ N∗ E(Xi) = 30 V (Xi) = 302 = 900 σXi
= 30

Exemple :
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Le temps écoulé entre le début de la journée et le passage de la nième voiture est donc

Sn = X1 + · · · + Xn

On cherche donc à déterminer
P(S50 < T )

où T = 24 ∗ 60 est la durée d’une journée exprimée en minutes
On pose

X50 = X1 + X2 + · · · + X50
50 = S50

50
et la variable centrée réduite associée

X50
∗ =

√
50X50 − 30

30 =
√

50S50 − 30 × 50
30 × 50 = S50 − 30 × 50

30 ×
√

50

On cherche donc à estimer la probabilité équivalente

P
(

X50
∗
⩽

T − 30 × 50
30 ×

√
50

)
D’après le théorème central limite, on peut faire l’approximation suivante

P
(

X50
∗
⩽

T − 30 × 50
30 ×

√
50

)
= Φ

(
T − 30 × 50
30 ×

√
50

)
Or

T − 30 × 50
30 ×

√
50

= 24 ∗ 60 − 30 × 50
30 ×

√
50

= 24 ∗ 2 − 50√
50

= − 2√
50

≈ −0.283
Φ(−0.283) = 1 − Φ(0.283) ≈ 1 − 0.61 ≈ 0.39

La probabilité qu’il y ait moins de 50 voitures est environ 0.39

V. Approximations

V. 1 Approximation d’une binomiale par une loi normale

Soit (Sn) une suite de v.a. indépendante de même loi binomiale B(n, p) (avec p ∈] 0; 1[ ). Alors,

S∗
n = Sn − np√

np(1 − p)
L−→ X, où X ↪→ N (0, 1)

Proposition 5.1

R1 – Une loi B(n, p) peut donc être approchée par une loi N (np, npq) lorsque n est assez grand. En pratique, cette
approximation est d’autant plus valide que p est proche de 0.5 .

R2 – On approxime une loi discrète par une loi continue. En pratique on approche donc P (Sn = k) non pas par P (X = k)
(qui vaut 0), mais par P (k − 1/2 ≤ X ≤ k + 1/2).

R3 – D’après le programme officiel : "Toutes les indications devront êtres fournies aux candidats quant à la justification
de l’utilisation des approximations." Dans la pratique, on estime raisonnable d’approcher une loi binomiale B(n, p)
par une loi normale N (np, npq) lorsque n ≥ 30, np ≥ 5 et nq ≥ 5.

Remarques :
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On lance 900 fois une pièce de monnaie équilibrée et on note X le nombre de Pile obtenus. On veut estimer
α = P (405 ≤ X ≤ 495).

1. Quelle est la valeur exacte de α ? (On exprimera le résultat sous forme d’une somme qu’on ne cherchera
naturellement pas à calculer.)

2. Utiliser la table de la loi normale centrée réduite pour donner une estimation de α.

Exercice 11

V. 2 Approximation d’une loi de Poisson par une loi normale

Soit (Sn) une suite de v.a. indépendante de même loi de Poisson P(nα) (avec α > 0 ). Alors,

S∗
n = Sn − nα√

nα

L−→ X, où X ↪→ N (0, 1)

Proposition 5.2

R1 – Une loi P(λ) peut donc être approchée par une loi N (λ, λ) lorsque λ est assez grand.
R2 – Comme pour l’approximation précédente, on suivra les indications du texte.

Remarques :
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