CHAPITRE N°12

Convergences et approximations

Dans tout le chapitre on ne s’intéresse qu’a des variables aléatoires réelles discretes ou bien a densité.

I. Inégalités probabilistes

Théoréme 1.1 — Inégalité de Markov}

Si X est une variable aléatoire réelle a valeurs positives admettant une espérance alors

E(X)

VaeR:L  P(X >a)<

Remarques :

R1 — On sait déja que t — P(X > t) est décroissante. Cette inégalité permet de voir que la décroissance se fait & une
vitesse d’au moins 1/¢.

R2 — En combinant 'inégalité de Markov (appliquée a |X|" ) avec la croissance de la fonction ¢ — ¢ sur R4, on voit
que, si X admet un moment d’ordre r, alors

E(|X]|"
V>0 P(\X|2t)g%

Ainsi, plus la variable admet des moments d’ordres élevés, plus les queues de probabilités décroissent vite.

Démonstration. Nous allons démontrer ce résultat dans deux situations différentes, selon que X soit une variable
aléatoire discrete ou a densité. On suppose dans tous les cas que X est positive, autrement dit X (2) C R4, et que X
admet une espérance. Soit ¢ > 0.

e Si X est une variable aléatoire discrete, alors

E(X)= Y kP(X=k) =Y kP(X=Fk)+> kP(X =k)

kEX(Q) k<t k>t
> kP(X =k) (cark >0)
k>t
>ty P(X =k)=tP(X >t)
k>t
E(X
et on a bien | P(X >t) < (t )

o Si X est une variable & densité et que f est une densité de X alors, comme X est a valeurs positives, f(z) =0
si x < 0. Il suit que

E(X):/+Ooxf(af)da::/O+Doa:f(a;)dx:/()txf(x)dx+/t+ooxf(x)dx

— 00

> /+OO xf(z)dz > t/+<>0 f(x)dz =tP(X > 1)

t t

et on a bien | P(X > t) <

t

E(X)
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Théoreme 1.2 — Inégalité de Bienaymé-Tchebychev]

Soit X une variable aléatoire réelle admettant un moment d’ordre 2 alors
V(X)
22

Ve >0 P X —EX)|>¢) <

Remarque :

Pour rappel, la variable centrée X — E(X) est centrée et représente la déviation de X par rapport & son espérance. Ce
théoréme donne une majoration précise de la probabilité de cette déviation : X dévie de son espérance de plus de € avec
une probabilité décroissante 3 vitesse 1/ (& une constante prés). Le résultat n’a d’intérét que pour e grand.

Démonstration. Soit X une variable aléatoire admettant un moment d’ordre 2. Alors X admet une variance et donc
une espérance.

On applique l'inégalité de Markov a la variable (X — E(X ))2, qui est bien positive et admet une espérance elle aussi.
Alors, par croissance de t — t sur R, pour tout € > 0 :

PUX — B(X)| 2 &) = P (X = BxP) > ) < ZUEZEEOP) VD)

r—| Exercice 1 N

1. Soit X — U([0;1]).
(a) Rappeler la valeur de E(X) et de V(X). Que vaut P(|X — E(X)| > t) pour t > 1/27
(b) Exprimer I'inégalité de Bienaymé-Tchebychev.

2. Soit X < £(1).
(a) Rappeler la valeur de E(X) et de V(X). Que vaut P(|X — E(X)| >t) pour t > 17
(b) Exprimer 'inégalité de Bienaymé-Tchebychev.

r—| Exercice 2 N
Soient X7, Xo, ..., X,n v.a. (mutuellement) indépendantes de méme loi B(p). Montrer que
1 ¢ p(1—p)
Pl |- Xp—pl>t| <—=

Exercice 3

On lance plusieurs fois une piece parfaitement équilibrée. Les lancers sont indépendants. Combien de lancers
faut-il effectuer pour pouvoir affirmer, avec un risque d’erreur inférieur & 5%, que la fréquence d’apparition du
Pile au cours de ces lancers sera comprise entre 49% et 51% 7

Cours de mathématiques ECG 2 2/11



II. La loi faible des grands nombres

,—[Théoréme 2.1 — Loi faible des grands nombres.} N\

Soit (X,,) une suite de v.a. (mutuellement) indépendantes, admettant une méme espérance m et une méme
variance 2. Soit

7 _XitXot. .+ X,

n

n
Alors,

Ve>0, lim P(|X,—-m|>e)=0 et lim P(|X,—m|<e)=1

n—-+o0o n—-+oo

Remarque :

—_

O © 0O Utk W

Autrement dit, ce théoréme signifie que la moyenne de n variables aléatoires indépendantes suivant une méme loi converge
vers leur espérance commune.

Démonstration. La linéarité de I'espérance et les propriétés de la variance donnent :

E (Xn) =m, V(X,)= -
On applique I'inégalité de Bienaymé-Tchebychev, et on obtient :
_ vV (Xn) o2

P(|anm| >¢e)=P(| X, — E(X,)|>¢)

l

O

Avec Python :

On cherche a illustrer la loi des faible des grands nombres. On va commencer par calculer la moyenne de la simulation
de n variables aléatoires qui suivent une loi uniforme sur [0,1]. Puis on va recommencer cette expérience un grand
nombre de fois et on a va visualiser ces résultats a 'aide de hist

n=100 #celu? qui apparatt dans le théoréme
L=1000 #nombre de repetitions

Moyennes=[]
for i in range(L):

Moyennes.append (....... )
plt.x1im(0,1)
plt.hist(........... )
plt.show ()

Deux illustrations de la loi des grands nombres avec la loi uniforme

3.0
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10 4
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0.0
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Exercice 4

Modifier le programme précédent pour qu’il simule la méme expérience aléatoire avec la loi exponentielle de
parametre 2.

\.

,—[ Définition 3.1} .

III. Convergences

ITI. 1 Convergence en loi

Soient (X,,) une suite de v.a. et X une autre v.a. On note respectivement Fx, et Fx les fonctions de répartition
de X,, et de X. On dit que X,, converge en loi vers X, si, pour tout réel ¢ ou la fonction F'x est continue, on a

lim Fxn (t) = Fx(t)

n—-+oo

On note X, i> X.

Remarques :

r—' Exercice 5 ~

R1 — Il faut bien faire attention aux x et n.

R2 — Pour montrer qu’une suite de v.a. converge en loi, on fixe d’abord un ¢ (parmi les points ot Fx est continue) et on
fait ensuite tendre n vers l'infini.

R3 — Si la variable X est a densité, sa fonction de répartition Fx est continue et la convergence ci-dessous doit donc
avoir lieu en tout point ¢ € R.

R4 — Certaines suites de v.a. ne convergent pas. On gardera également a l’esprit qu’une suite de v.a. discrétes peut
converger vers une v.a. a densité et inversement.

1
Soit (X,,) une suite de v.a. telle que, pour tout n € N*, X, — & (1 + ) Montrer que (X,,) converge en loi vers
n

une v.a. Z a déterminer.

r—| Exercice 6 N

1
Soient n € N*, X, — U([0;n]) et Y, = —X,,.
n
1. Montrer que
0,sit<0

[t] +1
n—+1

,sit € [0;n]
Lsit>1
2. En déduire 'expression de Fy, (t).

3. Conclure que Y, = Z, ot Z < U([0; 1]).

Exercice 7

Soit X,, < U([n;n + 1]). Montrer que (X,,) ne converge pas en loi.
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La proposition suivante est une conséquence des définitions de fonction de répartition et de convergence en loi.

Proposition 3.2}

Soit (X,,) une suite de v.a. telle que X, £, X. Pour tous réels a, b points de continuité de Fx avec a < b, on a

lim P(a< X, <b)=Pla< X <b)

n—-+oo

,—[Proposition 3.3 — Caractérisation par les varaibles aléatoires a support dans Z.} N

Soient X une v.a. discrete telle que X (2) C Z et (X,,) une suite de v.a. discretes avec la méme propriété. Alors,

(Xniu() — (VkeN, lim P(Xn:k)zP(X:k))

n—-+oo

Exercice 8

1
Soit (X,,) une suite de v.a. t.q. : Vn € N*, X,, < B (ln (2 4 E)) Montrer que X, £ X, ot X — B(In(2)).

III. 2 Convergence de Binomiales vers Poisson

Théoréme 3.4

Soit A € R.. Soit (X,)nen- une suite de v.a. telle que X,, < B(n, A/n) alors (X, )nen+ converge en loi vers une
variable aléatoire suivant la loi de Poisson P()) .

Convergence des lois binomiales B(n,4/n) vers la loi de Poisson P(4)

15 20 25

B(5,4/5) B(25,4/25)

e » 2 P4)
B(50,4/50)
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Programme Python a compléter

11 |lam=4

12 |n=50

13 |[N=1000

14

15 |R=rd.binomial (............. )
16 |plt.hist ()

17 |plt.show ()

18

19 |##

20 |[R=rd.poisson(....... )
21 |plt.hist ()

22 |plt.show ()
Remarque :

La loi de Poisson est aussi appelée loi des événements rares, et ce théoréme vient illustrer cette propriété. En effet, on
constate qu'une loi de Poisson permet d’approcher la loi qui modélise un processus de comptage de succes lorsque la
probabilité du succes est tres petite devant le nombre d’observations, autrement dit que le succes devient un éveénement

rare.

IV. Théoréme Central Limite

IV. 1 Préliminaires

,—[Proposition 4.1 — Transformation affine d’une variable aléatoire suivant la loi N (0, 1)]—

Si X < N(m,0?) et si a et b sont deux réel a > 0 et b deux réels alors la variable Y = aX + b vérifie

Y — N(am +b,a%0?)

\. J

7. Méthode :

Pour centrer et réduire une variable aléatoire : Soit X une variable aléatoire admettant un moment d’ordre 2 (elle
admet donc une espérance p et un écart-type o). en posant

_X—up

g

X*

On constate que
EX*)=0 V(X*)=1

Donc X* est une variable aléatoire réduite et centrée!
AN )

Démonstration. En utilisant la linéarité de ’espérance

X—u) _EX)—p p—p

g

E(X+)=FE (

et en utilisant la formule V(aX +b) = a*V(X)

V(X¥) =V <X_“> _ V)

o
O

En combinant la stabilité des lois normales pour les transformations affines et la remarque précédente, on peut
transformer toute loi normale en une loi normale réduite et centrée.
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Ve

Méthode :

Pour se ramener a une loi normale réduite-centrée :
Soit X < N(u, %) on pose

o
D’apres les résultats précédents
— N(0,1)
Réciproquement on peut écrire
X=0X"+pu

AN

Exemple :

Utilisation des tables de la loi normale (cf. Annexe) On considére
X — N(2,4)

et on voudrait avoir une approximation de

Donc
PB<X L PI<X-2<2)
1
e
2 -
=0(1)—- (2) définition de la fonction de répartition
~ 0,8413 — 0,6915 En lisant sur une table
~ 0,1498

Exercice 9

Soit Y < N(1,3), donner une approximation de P(1 < X < \/g) On donne 1/\/3 ~0,577.

Cas d’une somme et d’une moyenne :

Soit X7 Xo,... X,, des variables aléatoires indépendantes de méme espérance i et de méme écart-type o. On pose

X+ Xg+ -+ X,
Sn:X1+X2++Xn et Xn = BUR.C s *

n

alors les variables aléatoires centrées et réduites associées sont

Sp —np *
S = —— t X, =
- i e vn

X, — 1

Démonstration.
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IV. 2 Le théoréme

Le résultat suivant est un théoréme fondamental, qui peut étre vu comme un aboutissement de ce cours de mathé-
matiques appliquées. I illustre notamment le role crucial de la loi normale A(0,1) en statistique.

,—[Théoréme 4.2 — Théoréme Central Limite (TCL)} \

Soit (X;,) une suite de v.a. indépendantes de méme loi, d’espérance (commune) finie m et de variance (commune)
finie (et non nulle) o*. Pour n € N*, on note

k=1 "
et
g Sn=B(S) _Si—mm _ VA(fa-m) Xn-B(%) _ .
" (Sh) - oyn o N O’(Xn) o
Alors,

SrEvZ et X:-52Z on Z—N(O1).

En particulier, notant ® la fonction de répartition de la loi normale A/(0, 1), on a, pour tous réels a, b avec a < b,

1 b g
lim Pla<S*<b)=®0b)—®a)=— [ e¥/2dt
Jim_Pla< S <b) = 0(b) ~90) = —— [

Remarques :

23
24
25
26
27
28
29
30
31
32
33
34

R1 — Autrement dit, les variables S, et X, convergent en loi vers une loi normale. La somme (ou la moyenne) de n
variables aléatoires indépendantes de méme loi se comporte de maniere approximativement gaussienne si n est
suffisamment grand.

R2 — Le TCL vient préciser le résultat donné par la loi faible des grands nombres. On retrouve que la moyenne empirique
converge vers la moyenne théorique, et le TCL précise que la convergence a lieu & vitesse de 1/+/n.

r—| Exercice 10 N

11
Soit (U,) une suite de v.a. indépendantes telle que, pour tout n € N*, U,, — U <[—2; 2] ) Montrer que
12 & c X
;ZU;C U, on U< N(0,1)
k=1

IV. 3 Une Illustration avec Python

Code Python a compléter :

def phi(x):
return
#tracé de la gaussienne

x=np.arange (-5,5,0.01)
y=phi (x)
plt.plot(x,y,color="red’,linewidth=2)

#tracé de l’histogramme
n=50 # celui qui apparatt dans la limite
L =1000000 # nombre de simulation
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35
36 |sigma=...

37 |moyenne=. ..

38 |Xbarre=[]

39 |for i in range(L):

40 Xbarre.append (np.mean(rd.random(n)))
41
42
43 |XbarreE=...
44
45
46
47 |plt.hist (XbarreE) #plus compliqué en réalité
48 |plt.show ()

Illustration du théoréme central limite

Exemple :

On suppose que U'intervalle de temps entre deux voitures successives & un passage a niveau (peu fréquenté) suit
une loi exponentielle de moyenne 30 minutes. On suppose de plus qu’il y a indépendance entre les intervalles de
temps séparant les instants de passage de voitures. Calculons (une valeur approchée) de la probabilité qu’il y ait
plus de 50 voitures qui empruntent le passage a niveau une journée donnée.

On note X; l'intervalle exprimé en minutes séparant le véhicule i — 1 du véhicule i,X; représentant I'intervalle
entre le début de la journée et le temps de passage de la premieére voiture.

Les (X;);>1 forment une suite de variable aléatoires indépendantes et de méme loi exponentielle de parameétre

— et vérifient dont
30

VieN*  EB(X;)=30 V(X;)=30°=900 ox, =30
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Le temps écoulé entre le début de la journée et le passage de la nieme voiture est donc
ST),:X1+"'+X7I

On cherche donc & déterminer
P(S5o < T)

ou T = 24 % 60 est la durée d’une journée exprimée en minutes

On pose
—  Xi+Xo+---+ X0 Sxo

X =
50 50 50

et la variable centrée réduite associée

\/%Ximf30:\/%550—30x507550730><5()

Xoo = =
50 30 30 x 50 30 x v/50

On cherche donc a estimer la probabilité équivalente

P(Xso*é T30><50>

30 x /50

D’apres le théoreme central limite, on peut faire 'approximation suivante

P(X *<T30><50> (T30x50)
S T30 % VB0 30 x /50

Or

T —30 x50 24%60—30 x50

30xv50 30 x /50
24 %2 — 50

V50
2

V50
—0.283
®(—0.283) = 1 — $(0.283) ~ 1 — 0.61 ~ 0.39

Q

La probabilité qu’il y ait moins de 50 voitures est environ 0.39

V. Approximations

V.1 Approximation d’une binomiale par une loi normale

,—[Proposition 5.1} N\

Soit (.S,,) une suite de v.a. indépendante de méme loi binomiale B(n,p) (avec p €]0;1[ ). Alors,

Sro ST Ly g X o A(0,1)
np(1 —p)

n

Remarques :

R1 — Une loi B(n,p) peut donc étre approchée par une loi N'(np,npq) lorsque n est assez grand. En pratique, cette
approximation est d’autant plus valide que p est proche de 0.5 .

R2 — On approxime une loi discréte par une loi continue. En pratique on approche donc P (S,, = k) non pas par P(X = k)
(qui vaut 0), mais par P(k —1/2 < X <k +1/2).

R3 — D’apres le programme officiel : "Toutes les indications devront étres fournies aux candidats quant a la justification
de lutilisation des approzimations.” Dans la pratique, on estime raisonnable d’approcher une loi binomiale B(n, p)
par une loi normale A (np, npq) lorsque n > 30,np > 5 et ng > 5.
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0.12 4

0.10 1

0.08 1

0.06 -

0.04 +

0.02 A

0.00

densité N(25, 12.5)
B B(50, 0.5) simul

r—' Exercice 11

a = P(405 < X < 495).

On lance 900 fois une piece de monnaie équilibrée et on note X le nombre de Pile obtenus. On veut estimer

1. Quelle est la valeur exacte de «? (On exprimera le résultat sous forme d’une somme qu’on ne cherchera
naturellement pas a calculer.)

2. Utiliser la table de la loi normale centrée réduite pour donner une estimation de a.

V. 2 Approximation d’une loi de Poisson par une loi normale

Proposition 5.2]

Soit (S,) une suite de v.a. indépendante de méme loi de Poisson P(na) (avec o > 0 ). Alors,

S, —na

- X
S — - X,

n

on X < N(0,1)

Remarques :

R1 — Une loi P(\) peut donc étre approchée par une loi N'(\, A) lorsque \ est assez grand.

R2 — Comme pour I’approximation précédente, on suivra les indications du texte.

0.08 -

0.07

0.06 1

0.05 4

0.04

0.03 1

0.02 A

0.01

0.00

10 20

densité N(25, 25)
B P(25) simul

30
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