
Correction de l’exercice n°1 - EDHEC 2023

1. Si on pose, par exemple, f(x) = 1
2x + 1 pour tout x réel, alors pour tout (x, y) ∈ R2, on a : |f(x)−f(y)| =

∣∣∣∣12x − 1
2y

∣∣∣∣ =
1
2 |x − y|. La fonction f est donc 1

2-contractante (et plus généralement, K-contractante pour tout K ∈
[ 1

2 ; 1
[
).

De manière générale, toute fonction affine x 7→ ax + b avec |a| < 1 convient.

2. Soit a ∈ R quelconque. On montre que f est continue en a. Pour tout x ∈ R, on a |f(x) − f(a)| ≤ K|x − a| et donc

−K|x − a| ≤ f(x) − f(a) ≤ K|x − a|

Par encadrement, on en déduit que f(x) − f(a) −→
x

a0 et donc f(x) −→
x

af(a), ce qui montre la continuité de f en

a. Ceci étant vrai pour a quelconque, on en déduit que la fonction f est continue sur R .

Remarque : on pouvait aussi le démontrer en revenant à la définition de la limite avec les ε. En effet, soit ε > 0. On
pose η = ε

K
. Alors pour tout x réel vérifiant |x − a| < η, on a

|f(x) − f(a)| ≤ K|x − a| ≤ Kη < ε

Ce qui montre la continuité de f en a.

3. Par l’absurde, supposons que l’équation f(x) = x admet au moins 2 solutions distinctes x1 et x2.
D’après la relation (∗), on a |f(x1) − f(x2)| ≤ K|x1 − x2|. Or, par hypothèse, f(x1) = x1 et f(x2) = x2, d’où
|x1 − x2| ≤ K|x1 − x2|, soit (1 − K)|x1 − x2| ≤ 0. Mais ceci est absurde car |x1 − x2| > 0 (x1 ̸= x2 par hypothèse) et
1 − K > 0 (K ∈ ]0; 1[ d’après l’énoncé).
Conclusion : l’équation f(x) = x admet au plus une solution sur R.

4. (a) Comme indiqué, on procède par récurrence pour montrer pour tout n ∈ N la propriété P(n) : « |un+1 − un| ≤
Kn|u1 − u0| ».
Pour n = 0, l’inégalité à montrer est |u1 − u0| ≤ |u1 − u0| (car K0 = 1), ce qui est trivialement vrai. D’où P(0).
Maintenant, soit n ∈ N quelconque fixé. On suppose P(n) et on montre P(n + 1).
D’après la relation (∗), on a |f(un+1) − f(un)| ≤ K|un+1 − un|, c’est-à-dire

|un+2 − un+1| ≤ K|un+1 − un|

Or, par hypothèse de récurrence, on a |un+1 − un| ≤ Kn|u1 − u0|, et donc K|un+1 − un| ≤ Kn+1|u1 − u0|. Par
conséquent, en reportant dans l’inégalité ci-dessus :

|un+2 − un+1| ≤ Kn+1|u1 − u0|

Ce qui montre P(n + 1).
Conclusion : on a montré par récurrence que pour tout n ∈ N, on a |un+1 − un| ≤ Kn|u1 − u0|.

(b) D’après l’énoncé, K ∈ ]0; 1[, donc la série géométrique
∑

Kn converge, et donc
∑

Kn|u1 − u0| également. Par
comparaison, pour des séries à termes positifs, on en déduit que la série

∑
|un+1 − un| converge.

Ainsi, la série de terme général un+1 − un est absolument convergente, et donc convergente.

Pour tout n ∈ N, on a
∑n−1

k=0(uk+1 − uk) = un − u0 (somme télescopique), donc un = u0 +
∑n−1

k=0(uk+1 − uk). Or,
d’après ce qui précède, le membre de droite admet une limite finie lorsque n tend vers +∞, donc le membre de
gauche aussi.
Conclusion : la suite (un)n∈N converge.

(c) L’inégalité démontrée à la question 4.(a) peut se réécrire : pour tout n ∈ N, |f(un) − un| ≤ Kn|u1 − u0|. On
passe à la limite dans cette inégalité lorsque n tend vers +∞. On obtient, par continuité de f (cf question 2) :
|f(a) − a| ≤ 0. On en déduit que f(a) − a = 0, c’est-à-dire f(a) = a.
Ainsi, l’équation f(x) = x admet au moins une solution (à savoir a). Comme elle n’en a pas plus (cf question 3),
on en déduit que l’équation f(x) = x admet une unique solution réelle, qui est a .
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5. (a) D’après la question 4.(a), pour tout i ∈ N, on a |ui+1 − ui| ≤ Ki|u1 − u0|. Donc, en sommant ces inégalités pour
i variant entre n et n + p − 1 :

n+p−1∑
i=n

|ui+1 − ui| ⩽
n+p−1∑

i=n

Ki × |u1 − u0|

(b) On a un+p − un =
∑n+p−1

i=n (ui+1 − ui) (somme télescopique). Or, par inégalité triangulaire :∣∣∣∣∣
n+p−1∑

i=n

(ui+1 − ui)
∣∣∣∣∣ ≤

n+p−1∑
i=n

|ui+1 − ui|

Ainsi,

|un+p − un| ≤
n+p−1∑

i=n

|ui+1 − ui|

Et donc, d’après la question précédente :

|un+p − un| ≤
n+p−1∑

i=n

Ki × |u1 − u0|

On reconnaît alors dans le membre de droite la somme de p termes consécutifs d’une suite géométrique de raison
K ̸= 1, et de premier terme Kn|u1 − u0|. D’où le résultat :

|un+p − un| ⩽ Kn × 1 − Kp

1 − K
|u1 − u0|

(c) Il suffit de passer à la limite dans l’inégalité ci-dessus lorsque p tend vers +∞. On obtient alors :

|a − un| ⩽ Kn × 1
1 − K

|u1 − u0|

c’est-à-dire :

|a − un| ⩽ Kn

1 − K
× |u1 − u0|

6. (a) La fonction f est un quotient de fonctions de classe C2 dont le dénominateur ne s’annule pas (une exponentielle
est toujours strictement positive). Par conséquent, f est de classe C2 sur R .

De plus, pour tout t ∈ R, on a f ′(t) = −et

(1 + et)2 , puis

f ′′(t) = −et(1 + et)2 + et × 2et(1 + et)
(1 + et)4

=
(1 + et)

(
− et(1 + et) + 2(et)2

)
(1 + et)4

= −et(1 + et) + 2(et)2

(1 + et)3

= −et − e2t + 2e2t

(1 + et)3

= −et + e2t

(1 + et)3

C’est-à-dire : f ′′(t) = et(−1 + et)
(1 + et)3 .

(b) Pour tout t ∈ R, et > 0 et (1 + et)3 > 0, donc f ′′(t) est du signe de −1 + et. Or,

−1 + et > 0 ⇐⇒ et > 1
⇐⇒ t > 0

Et de même, −1 + et < 0 ⇐⇒ t < 0 (et −1 + et = 0 ⇐⇒ t = 0). D’où le tableau de variations de f ′ :
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x −∞ 0 +∞

f ′′(t) − 0 +

f ′(t)
−1
4

On en déduit que f ′(t) ≥ −1
4 pour tout t ∈ R. Par ailleurs, comme f ′(t) = −et

(1 + et)2 et qu’une exponentielle est

toujours strictement positive, on a également f ′(t) < 0. D’où, pour tout réel t :
−1
4 ≤ f ′(t) < 0

Et donc, en particulier, |f ′(t)| ⩽ 1
4 .

(c) D’après les questions précédentes, la fonction f est dérivable sur R et |f ′| ⩽ 1
4 sur R. Par conséquent, d’après

l’inégalité des accroissements finis, on a, pour tout (x, y) ∈ R2 :

|f(x) − f(y)| ≤ 1
4 |x − y|

Autrement dit, la fonction f est 1
4-contractante .

(d) La fonction f est 1
4-contractante, donc, d’après la question 4,

la suite (un)n∈N converge (et sa limite est l’unique point fixe de f).

(e) Il suffit de compléter avec la définition de la suite (un) (premier terme et relation de récurrence) :
de f s u i t e (n ) :

u=@\ t e x t c o l o r { purple }{0}@
f o r k in range (1 , n+1):

u=@\ t e x t c o l o r { purple }{1/(1+np . exp (u ) )}@
return u

(f) On applique le résultat de la question 5.(c). Ici, K = 1
4 (question 6.(c)), u0 = 0 et u1 = f(u0) = 1

2 . Ainsi, pour
tout n ∈ N, on a :

|a − un| ≤
( 1

4
)n

1 − 1
4

× 1
2

c’est-à-dire :
|a − un| ≤

(
1
4

)n

× 2
3

Ainsi, si 4n ≥ 2000
3 , alors

(
1
4

)n

≤ 3
2000 , donc

(
1
4

)n

× 2
3 ≤ 1

1000 , et donc |a − un| ≤ 1
1000 .

Autrement dit, si n vérifie 4n ⩾
2000

3 , alors un est une valeur approchée de a à moins de 10−3 près.

(g) D’après la question précédente, il suffit d’incrémenter n jusqu’à avoir l’inégalité 4n ⩾
2000

3 . La valeur de un sera
alors la valeur approchée de a cherchée :
n=0
whi le 4∗∗n < 2000/3:

n=n+1

pr in t ( s u i t e (n ) )

Ce qui donne : 0.40138470446564667.
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Correction du problème - HEC 1996
Préliminaire
Comme l’annoncé l’énnoncé, on peut traiter la majeure partie sans avoir trouvé la valeur de Sk (j)
L’énnoncé disait ”on pourra calculer pour celà (1 − x)Sk(x) ”
On développe les calculs en faisant apparaître la partie commune qui se simplifie.

(1 − x) Sk(x) = (1 − x)
k∑

j=1
jxj−1 =

k∑
j=1

jxj−1 −
k∑

j=1
jxj réindexé i − 1 = j

=
k∑

j=1
j.xj−1 −

k+1∑
i=2

(i − 1).xi−1 =
k∑

j=1
j.xj−1 −

k+1∑
i=2

i.xi−1 +
k+1∑
i=2

xi−1

= 1 +
k∑

j=2
j.xj−1 − (k + 1).xk −

k∑
i=2

i.xi−1 +
k∑

j=1
xj

= 1 − (k + 1).xk + xk+1 − 1
x − 1 − 1 car x ̸= 1

= −kxk+1 + (k + 1)xk − 1
x − 1

D’où Sk(x) = kxk+1 − (k + 1)xk + 1
(x − 1)2 car x ̸= 1

I. Exemples d’expériences aléatoires discrètes.

Un problème ici est que les valeurs des Xi ne sont pas données directement mais sous forme paramètrée : j

r
pour j ∈ [[0, r]]

1. Première stratégie.
On pose, pour tout entier n supérieur ou égal à 2, σ1 = 0. On a donc, pour tout entier naturel n non nul, Gn = X1 et
Ln = 1

Comme il y a r + 1 valeurs équiprobables, on a pour tout i ∈ [[0, r]] : p

(
X1 = i

r

)
= 1

r + 1

Donc E (Gn) = E(X1) =
r∑

i=0

i

r
p(X1 = i

r
) =

r∑
i=0

i

r
.

1
r + 1 = r (r + 1)

2r (r + 1) = 1
2

Variante : on a aussi rX1 ↪→ U[[0,r]] donc E (rX1) = r + 0
2 et E (X1) = 1

2
2. Deuxième stratégie,

On pose, pour tout entier n supérieur au égal à 2 et pour tout i ∈ {1, . . . , n − 1} , σi = 0, 5

(a) Comme (X1 < 0, 5) est réunion d’événements disjoints (chacune des valeurs possibles) de même porbabilité
1/ (r + 1) , pour calculer P (X1 < 0, 5) , il suffit de dénombrer les valeurs prises par i qui sont < 0, 5 :
On a j/r < 0, 5 pour j ⩽ (r − 1) /2 et sinon, j/r > 0, 5
Donc l’inégalité est vérifiée pour les valeur de j de 0 à (r − 1) /2.

Il y en a donc (r − 1) /2 − 0 + 1 = (r + 1) /2

Donc P (X1 < 0, 5) = r + 1
2 · 1

r + 1 = 1
2 (réunion d’événements disjoints)

Et on a apour tous les autres jour la même probabilité.
(b) Si le gain a été inférieur à 1/2(seuil de vente), c’est que la vente s’est faite le dernier jour. Donc que le cour a

toujours (sauf éventuellement le dernier) été inférieur à 1/2.

Le cours du dernier jour est le cours de vente.
Donc pour j/r < 1/2 : (

G = j

r

)
=

n−1⋂
i=1

(
Xi <

1
2

)
∩
(

Xn = j

r

)
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Les évènements sont indépendants.

P

(
G = j

r

)
=

n−1∏
i=1

P

(
Xi <

1
2

)
.P

(
Xn = j

r

)
=
(

1
2

)n−1
.

1
r + 1

= 2
(r + 1)2n

Si j

r
⩾

1
2 , le gain est supérieur a pu être fait n’importe quel jour. (et donc auparavent, le cours était inférieur à

1/2).
Donc pour j/r ⩾ 1/2 : (

G = j

r

)
=

n⋃
k=1

(
k−1⋂
i=1

(
Xi <

1
2

)
∩
(

Xk = j

r

))
(k étant le jour de la vente). Réunion d’évènements disjoints donc

P

(
G = j

r

)
=

n∑
k=1

P

(
k−1⋂
i=1

(
Xi <

1
2

)
∩
(

Xk = j

r

))
=

n∑
k=1

2
(r + 1)2k

= 2
r + 1

(
(1/2)n+1 − 1

1/2 − 1 − 1
)

= 2
r + 1

(
1
2n

− 1
)

(c) Comme ce sont les seules valeurs possibles de Gn, sa loi est bien donnée par :

∀j ∈
{

0, . . . ,
r − 1

2

}
P

(
Gn = j

r

)
= 2

r + 1
1
2n

∀j ∈
{

r + 1
2 , . . . , r

}
P

(
Gn = j

r

)
= 2

r + 1

(
1 − 1

2n

)
(d) Attention : bien repèrer les constantes .

gn =
r∑

j=0

j

r
P

(
G = j

r

)
=

(r−1)/2∑
j=0

j

r
P

(
G = j

r

)
+

r∑
j=(r+1)/2

j

r
P

(
G = j

r

)

=
(r−1)/2∑

j=0

j

r
.

2
(r + 1)2n

+
r∑

j=(r+1)/2

j

r
.

2
r + 1

(
1 − 1

2n

)
variable j

= 2
r(r + 1)2n

(r−1)/2∑
j=0

j + 2
r(r + 1)

(
1 − 1

2n

) r∑
j=0

j −
(r−1)/2∑

j=0
j


= ̸ 2

r(r + 1)

[ r−1
2 . r+1

2
̸ 2.2n

+
(

1 − 1
2n

)(
r(r + 1)

̸ 2 − (r − 1)(r + 1)
̸ 84

)]
= 1

r (r + 1)

[ r−1
2 . r+1

2
2n

+
(

1 − 1
2n

)(
r(r + 1) − (r − 1)(r + 1)

4

)]
= 1

r

[
− (r − 1)

4 +
(

1 − 1
2n

)
r

]
=

(
1 − 1

2n

)
− r − 1

4r
=3r + 1

4r
− 1

2n

n → 2nest croissante à valeur dans R+∗. Donc n → 1/2nest décroissante et n → −1/2nest croissante. Donc la
suite g est croissante.
Comme 2 > 1, 2n → +∞, et gn → 3r+1

4r quand n → +∞
Est-ce étonnant ?
Quand n tend vers l’infini, il n’y a plus de jour limite pour la vente. Donc le gain se fait le premier jour où le
cours est supérieur à 1/2.

Donc toutes les valeurs de entre r+1
2r et r

r sont équiprobables. Or la moyenne des valeurs des cours { r+1
2r , . . . , 1}

est
1 + r+1

2r

2 = 3r + 1
4r

.
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On pouvait donc prévoir ce résultat.
Et quand r → +∞ on a gn → 3

4 − 1
2n

(e) Soit n un entier supérieur ou égal à 2.

(L = n) si le cours a toujours été inférieur à 1/2 avant le nième jour. Donc (L = n) =
n−1⋂
i=1

(Xi <
1
2) et (indépen-

dance) P (L = n) = 1
2 n−1

Pour j ∈ {1, . . . , n − 1} :
(L = j) si le cours au jour j est supérieur à 1/2 et que auparavant il était inférieur.

Donc (L = j) =
j−1⋂
i=1

(
Xi <

1
2

)
∩
(

Xj ⩾
1
2

)
et (indépendance) P (L = j) = 1

2 j
.

Pour calculer l’espérance, il faut isoler la valeur j = n des autres et donc découper la somme :

ln =
n∑

j=0
j.P (L = j) =

n−1∑
j=0

j.P (L = j) + n

2 n−1 =
n−1∑
j=0

j

2 j
+ n

2 n−1

= 1
2

n−1∑
j=0

j

2 j−1 + 2n

(
1
2

)n

=1
2Sn−1

(
1
2

)
− 0 + 2n

(
1
2

)n

= 1
2

(n − 1)
( 1

2
)n − n

( 1
2
)n−1 + 1( 1

2
)2 + 2n

(
1
2

)n

= 2
[
(n − 1)

(
1
2

)n

− 2n

(
1
2

)n

+ 1
]

+ 2n

(
1
2

)n

= 2 − 2
(

1
2

)n

Donc ln = 2 − 2
( 1

2
)n → 2 quand n → +∞

(moyenne de la loi géométrique de paramètre 1/2 quand on ne vend qu’audesus de 1/2)

3. Troisième stratégie.
On pose, pour tout entier n supérieur ou égal à 2 et pour tout i ∈ {1, . . . , n − 1} , σi = 1.

(a) Le principe est le même que pour le 2.a) :

• si j/r < 1, (Gn = j/r) n’a pu être réalisé que le dernier jour. Donc :(
Gn = j

r

)
=

n−1⋂
i=1

(Xi < 1) ∩
(

Xn = j

r

)

P

(
Gn = j

r

)
=

(
r

r + 1

)n−1
· 1

r + 1

• (Gn = 1) peut être obtenu n’importe quand.

(Gn = 1) =
n⋃

k=1

(
k−1⋂
i=1

(Xi < 1) ∩
(

Xk = j

r

))

P (Gn = 1) =
n∑

k=1
P

(
k−1⋂
i=1

Xi < 1
)

P (Xk = 1)

=
n∑

k=1

(
r

r + 1

)k−1 1
r + 1

= 1
r + 1

n−1∑
j=0

(
r

r + 1

)j

= 1
r + 1 ·

( r
r+1 )n − 1

r
r+1 − 1

= 1 −
(

r

r + 1

)n

.
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d’où la loi de Gn : Gn (Ω) =
{

0
r

. . . ,
r

r

}
et P (Gn = 1) = 1 −

(
r

r+1

)n

et P

(
Gn = j

r

)
=
(

r

r + 1

)n−1 1
r + 1 = 1

r

(
r

r + 1

)n

sinon

(b) On doit metter à part la valeur Gn = 1 :

gn =
r∑

j=0

j

r
p

(
G = j

r

)
=

r−1∑
j=0

j

r

1
r

(
r

r + 1

)n

+ 1 −
(

r

r + 1

)n

=
(

r

r + 1

)n 1
r2

r(r − 1)
2 + 1 −

(
r

r + 1

)n

= 1 +
(

r

r + 1

)n(
r − 1

2r
− 1
)

= 1 − 1
2

(
r

r + 1

)n−1

Comme 0 < r
r+1 < 1, alors n → ( r

r+1 )n−1est décroissante et la suite g est donc croissante.

Comme
∣∣∣ r

r+1

∣∣∣ < 1, alors g → 1 quand n → +∞
Celà était prévisible : Si on peut attendre indéfiniment (n → +∞) d’avoir un gain de 1, le gain sera de 1 et donc
le gain moyen sera de 1.
Quand r → +∞ alors gn → 1/2 (quand on se rapproche d’une distributuion continue)

(c) On a comme précédemment :

(L = n) =
n−1⋂
i=1

(Xi < 1)

et (indépendance)
P (L = n) = ( r

r + 1)n−1

Pour j < n : (L = j) =
j−1⋂
i=1

(Xi < 1) ∩ (Xj = 1) et

P (L = j) =
(

r

r + 1

)j−1 1
r + 1

d’où :

ln =
n∑

j=0
j.P (L = j) =

n−1∑
j=0

j.P (L = j) + n

(
r

r + 1

)n−1

=
n−1∑
j=0

j

(
r

r + 1

)j−1 1
r + 1 + n

(
r

r + 1

)n−1

= 1
r + 1S

n−1

(
r

r + 1

)
+ n

(
r

r + 1

)n−1

= 1
r + 1

(n − 1)
(

r
r+1

)n

− n
(

r
r+1

)n−1
+ 1(

r
r+1 − 1

)2 + n

(
r

r + 1

)n−1

= (r + 1)
[
(n − 1)

(
r

r + 1

)n

− n
r + 1

r

(
r

r + 1

)n

+ 1
]

+ n
r + 1

r

(
r

r + 1

)n

=
(

r

r + 1

)n

(r + 1)
[
n − 1 − n

r + 1
r

+ n

r

]
+ (r + 1)

= −
(

r

r + 1

)n

(r + 1) + (r + 1)

= (r + 1)
[
1 −

(
r

r + 1

)n]
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Quand n → +∞ on a
(

r

r + 1

)n

→ 0 car
∣∣∣∣ r

r + 1

∣∣∣∣ < 1 et ℓn → r + 1

Quand r → +∞ on a r

r + 1 → 1 et
(

r

r + 1

)n

→ 1 d’où une forme indéterminée

On pose h = r
r+1 − 1 = − 1

r+1 → 0 et on a (1 + h)n − 1 ∼ nh quand h → 0 donc

(r + 1)
[
1 −

(
r

r + 1

)n]
= 1

h
[(1 + h)n − 1]

∼
nh

h
→ n

donc ℓn → n quand r tend vers +∞ avec n fixé.
Ici, le seul cas où la vente se fait avant n est Xi = 1, dont la probabiliité tend vers 0 quand r → +∞.

Donc la vente se fera le dernier jour Ln = n quand r → +∞
On pouvait donc s’y attendre.

4. Comparer brièvement les trois stratégies de la partie I .
On compare la méthode qui donne en moyenne le gain le plus important :

• Pour σi = 0 on a gn = 1
2

• pour σi= 1
2 on a gn = 3r+1

4r − 1
2n

• pour σi = 1 on a gn = 1 − 1
2

(
r

r+1

)n−1

Quand on a le temps d’attendre, (n → +∞ ) la dernièreméthode donnra la plus grand espérance de gain.
Pour n fixé, et un modèle réaliste (r → +∞, grand nnombre de valeurs possibles pour le cours) c’est alors la méthode
2 qui donnera le meilleur gain (proche de 3/4)
La méthode 1 de vente dès le premier jour donnant en moyenne toujours le moins bon résultat.

II. Exemples d’expériences aléatoires continues

Dans cette partie, on suppose que, pour tout entier naturel non nul i, la variable aléatoire Xi suit une loi de probabilité
uniforme sur [0, 1] ; elle admet donc une densité φ définie par : ∀t ∈ [0, 1] : φ (t) et sinon φ (t) = 0

On dit que les variables,(Xi)i⩾1 sont indépendantes si et seulement si, pour tout entier naturel n non nul et pour
tout (t1, . . . , tn) ∈ Rn, les événements (X1 ⩽ t1) , . . . , (Xn ⩽ tn) sont mutuellement indépendants ; on a alors, pour tout

(t1, . . . , tn) ∈ Rn, P

(
n⋂

i=1
(Xi ⩽ ti)

)
=

n∏
i=1

P (Xi ⩽ ti) .

(Les variables étant des variables à densité, les égalités ci-dessus sont encore vraies si on remplace (Xi ⩽ ti) par (Xi < ti)
)

1. Soit f la desnité de X1. On a F1 (x) = P (X1 ⩽ x) =
∫ x

−∞ f (t) dt

donc F1 (x) = 0 si x < 1. Si x ∈ [0, 1] on a F1 (x) =
∫ 0

−∞ 0dt +
∫ x

0 1dt = x et si x > 1 on a F1 (x) = 1
2. Première stratégie

On pose, pour tout entier n supérieur ou égal à 2, σ1 = 0
On a alors Gn = X1 puisque P (X1 < 0) = 0. et gn = E (Gn) = E (X1) = 1

2 espérance d’une loi uniforme.
3. Deuxième stratégie

Soit un réel α ∈ [0, 1[. On pose, pour tout entier n supérieur ou égal à 2 et pour tout i ∈ {1, . . . , n − 1} , σi = α

(a) On a :

• Pour t < 0 on a Fn (t) = P (Gn ⩽ t) = 0 car Gn prend la valeur d’une des Xi et P (Xi < 0) = 0
• Pour t ⩾ 1 on a Fn (t) = p (Gn ⩽ t) = 1 car P (Xi ⩽ 1) = 1 pour tout i.

• Pour t ∈ [0, α[ :comme t < σi, (Gn ⩽ t) implique que la vente s’est faite sous le seuil donc qu’elle n’a pu se
faire que le dernier jour.
Tous les vours précédents értaient donc sous le seuil.
donc (Gn ⩽ t) =

⋂n−1
i=1 (Xi < α) ∩ (Xn ⩽ t) et Fn (t) = P (Gn ⩽ t) = αn−1t par indépendance.
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• Pour t ∈ [α, 1[ si Gn > t, la vente s’est faite audessus du seuil et a pu se faire n’importe quel jour, à un cours
> t

(Gn > t) =
n⋃

k=1

(
k−1⋂
i=1

(Xi < α) ∩ (Xk > t)
)

incompatibles

P (Gn > t) =
n∑

k=1
αk−1 (1 − F1 (t)) par indépendance

= (1 − t)
n−1∑
h=0

αk−1 = (1 − t) αn − 1
α − 1

finalement Fn (t) = p (Gn ⩽ t) = 1 − p (Gn > t) = 1 − (1 − t) αn − 1
α − 1 si t ∈ [α, 1[

Pour prouver que Gn est à densité, on a sa fonction de répartition qui est

• C1 sur R− {0, α, 1}

• continue sur ]−∞, 0[ où Fn (t) = 0, sur[0, α[ où Fn (t) = αn−1t, sur [α, 1[ où Fn (t) = 1 − (1 − t) αn − 1
α − 1 et

enfin sur [1, +∞[ où Fn (t) = 1
Reste à prouver la continuité en

• 0− : On a Fn (0) = 0αn−1 = 0 et pour t < 0 : Fn (t) = 0 → 0 = Fn (0) donc Fn est continue en 0− donc en 0

• α− : On a Fn (α) = 1 − (1 − α) αn − 1
α − 1 = αn et pour 0 ⩽ t < α : Fn (t) = αn−1t → αn = Fn (α) donc Fn est

continue en α− donc en α

• 1− : On a Fn (1) = 1 et pour α ⩽ t < 1 : Fn (t) = 1 − (1 − t) αn − 1
α − 1 → 1 = Fn (1) donc Fn est continue en

1− donc en 1

Finalement Gn est bien à densité et une densité est F ′
n là où elle est dérivable :

∀t ∈ [0, α[ : fn (t) = αn−1, ∀t ∈ [α, 1] : fn (t) = 1 − αn

1 − α
, et fn (t) = 0 sinon

(b) On a (elle converge et )

gn =
∫ +∞

−∞
tfn (t) dt =

∫ 1

0
tfn (t) dt

=
∫ α

0
tαn−1dt +

∫ 1

α

t
1 − αn

1 − α
dt

= αn−1 α2

2 + 1 − αn

1 − α

1
2
(
12 − α2)

= αn+1

2 + 1 − αn

2 (1 + α)

= 1
2 (1 + α − αn)

Pour fixé, comme 0 < α < 1 alors n → αn est décroissante et g est donc croissante
Quand n → +∞ on a gn → 1

2 (1 + α).
Comme le temps d’attente n’est plus borné, la vente se fait à un prix entre α et 1, la densité étant équirépartie
sur cet intervalle.
On retrouve la la moyenne d’unhe loi uniforme sur [α, 1]

(c) Commme précédemment on distingue Ln = n de Ln = j pour j < n :

• (L = n) =
⋂n−1

i=1 (Xi < α) et (indépendance) P (L = n) = αn−1

• Pour j < n : (Ln = j) =
j−1⋂
i=1

(Xi < α) ∩ (Xj ⩾ α) et P (L = j) = αj−1 (1 − α) et
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ℓn =
n∑

j=1
j.P (L = j) =

n−1∑
j=1

j.P (L = j) + nαn−1

=
n−1∑
j=1

jαj−1 (1 − α) + nαn−1

= (1 − α) Sn−1 (α) + nαn−1

= (1 − α) (n − 1) αn − nαn−1 + 1
(α − 1)2 + nαn−1

= αn − 1
α − 1

: −αn nα−n−α
α(α−1) − 1

α−1 + nαn−1 = − αn

α−1 n + αn

α(α−1) n + αn

α−1 − 1
α−1 + n αn

α = αn−1
α−1

(d) Dans cette question α = 0, 5

on a alors : gn = p 3
4 −

( 1
2
)n+1 et ℓn = 2 − 2

(
1
2

)n

On retrouve les limites quand r → +∞. issues de la loi uniforme discrète.
Quand on subdivise plus finnement l’interavalle, la répartition uniforme discrète se rapproche de la répartition
uniforme continue.
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