

2020-2021 ECE 2

T.D. de Mathématiques

SUITES ET SÉRIES

Limite de Suites

Exercice 1.

Calculer les limites en $+\infty$ des suites dont le terme général est donné par les expressions suivantes.

1.
$$\ln\left(\frac{n+1}{n^2+1}\right)\frac{1}{n}$$

2.
$$\frac{1}{\sqrt{n^2+1}}(\ln(n^2+n)-\ln(n^2))$$

$$3. \left(1 + \frac{1}{n}\right)^n$$

4.
$$\left(1 + \frac{1}{n^2}\right)^n$$

5.
$$(1+n)^{\frac{n}{1+n^2}}$$

6.
$$\frac{\sqrt{n^2 + 1} - \sqrt{n^2 + n}}{\sqrt{n+1} - \sqrt{n}}$$

Séries

Exercice 2.

Les séries suivantes sont-elles convergentes?

1.
$$\sum \frac{n}{n^4 + n^2 + 1}$$

$$2. \sum \frac{1}{n \cdot \sqrt{n} + 1}$$

3.
$$\sum \frac{1}{n! + n^2}$$

$$4. \sum \frac{e^n}{n^{100}}$$

5.
$$\sum \frac{n^{4/9}}{3^n}$$

6.
$$\sum e^{-\sqrt{\ln n}}$$

Exercice 3 (Plus dur).

Les séries suivantes sont-elles convergentes?

1.
$$\sum \frac{n}{(\ln n)^n}$$

2.
$$\sum \frac{(n!)^2}{e^{n^2}}$$

3.
$$\sum \frac{n^2}{(2n-1)!}$$

Exercice 4 (Calcul de sommes).

Calculer la somme des séries suivantes.

$$1. \sum_{n \geqslant 2} \ln \left(\frac{1+n}{n-1} \right)$$

2.
$$\sum_{n \geqslant 2} \frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}$$

$$3. \sum_{n=0}^{\infty} \frac{n}{3^n}$$

Dans chacun des cas écrire une fonction scilab

function y =sommeapartielle (n) qui calcule la somme partielle de rang n.

Exercice 5 (Plus dur).

Calculer la somme des séries suivantes.

1.
$$u_n = \frac{1}{(3n+1)(3n+4)}$$
 $(n \ge 0)$

$$2. \sum_{n\geqslant 1} \ln\left(1 + \frac{2}{n(n+3)}\right)$$

Exercice 6 (Convergence absolue).

Les séries suivantes sont-elles absolument convergentes?

1.
$$\sum \frac{(-1)^n}{(2n+1)^3}$$

2.
$$\sum \frac{(-1)^{n-1}}{(3n-1)}$$

3.
$$1 - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{7}} + \dots$$

4.
$$\frac{1}{8} - \frac{2}{12} + \frac{3}{16} - \frac{4}{20} + \dots$$

$$5. \sum \frac{(-1)^n \ln n}{n}$$

6.
$$\sum \frac{(-1)^n}{\ln n}$$

Exercice 7 (Convergence absolue).

Les séries suivantes sont-elles absolument convergentes?

1.
$$\sum \left(\frac{1}{n}-1\right)^n$$

$$2. \sum \left(\frac{1-n}{1+n}\right)^n$$

3.
$$\sum \frac{(-1)^n}{\ln n + (-1)^n}$$

4.
$$\sum \frac{(-1)^n}{n+(-1)^n}$$

5.
$$\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$$

6.
$$\sum \frac{(-1)^n}{n^{1/n}}$$

7.
$$\sum (-1)^n \frac{2^n}{n^2}$$

8.
$$\sum \frac{(-1)^n n}{e^n}$$

9.
$$\sum \frac{(-1)^n}{n!}$$

Exercice 8.

Calculer la somme des séries dont le terme général est

1.
$$\frac{n^2-n}{(n+3)!}$$

2.
$$\frac{(n+2)(n+1)}{2^{n+3}}$$

Calcul de séries liées aux probabilités

Exercice 9 (Loi géométrique).

On suppose que $X \hookrightarrow \mathcal{G}(p)$ avec $p \in]0; 1[$.

Rappeller le support de X ainsi que la loi de X.

Montrer que X admet une espérance et la calculer

Montrer que X(X-1) admet une espérance et la **calculer**

En déduire que *X* admet une variance et la calculer

Exercice 10 (Loi de Poisson).

On suppose que $X \hookrightarrow \mathcal{P}(\lambda)$ avec $p \in \mathbb{R}_+^*$.

Rappeller le support de X ainsi que la loi de X.

Montrer que X admet une espérance et la calculer

Montrer que X(X-1) admet une espérance et la **calculer**

En déduire que *X* admet une variance et la calculer

Exercice 11.

On suppose que X est une variable aléatoire telle que

$$\forall n \in \mathbb{N}$$
 $P(X=n) = (n+1)p^2(1-p)^n$

ou
$$p \in [0; 1[$$
.

- 1. Montrer que cette formule définie une loi de probabilité.
- 2. Montrer que X admet une espérance et la **calculer**

Problèmes

Suites définies par récurrence

Exercice 12.

On considère la suite récurrente $u_{n+1}=f(u_n)$ avec $f(x)=x^2+\frac{3}{16}$ et $u_0\geqslant 0$.

- 1. Étudier f et le signe de f(x) x. Quelles sont les limites possible de (u_n) ?
- 2. On suppose $u_0 \in [0; 1/4]$. Montrer que pour tout $u_n \in [0; 1/4]$ puis que (u_n) est croissante.
- 3. Quelle est la nature de (u_n) (si elle est convergente, préciser sa limite)?
- 4. On suppose $u_0 \in [1/4; 3/4]$. Montrer que (u_n) est décroissante et minorée. Quelle est la nature de (u_n) (si elle est convergente, préciser sa limite)?
- 5. On suppose $u_0 > 3/4$. Montrer que (u_n) est croissante. Quelle est la nature de (u_n) (si elle est convergente, préciser sa limite)?

Exercice 13 (Suite récurrente et fonction logarithme).

On note f la fonction définie sur $]0; +\infty[$ par $f(x)=1+\ln x.$ Soit u la suite définie par son premier terme $u_0 \geqslant 1$ et par la relation de récurrence $u_{n+1}=f(u_n)$.

- 1. Démontrer que la suite est bien définie et qu'elle est minorée par 1.
- 2. Étudier le signe de f(x) x sur $[1; +\infty[$.
- 3. Étudier la monotonie de u.
- 4. En déduire que (u_n) est convergente, et donner sa limite.

Exercice 14 (EML 1996).

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^{2x} + 1}$

- 1. (a) Montrer que f est paire. Etudier les variations de f e
 - (b) Montrer qu'il existe un unique réel ℓ tel que $f(\ell)=\ell$. Justifier : $0\leqslant \ell\leqslant \frac{1}{2}$ (on donne f(1/2)<1/2)
 - (c) Montrer que pour tout réel $x : |f'(x)| \le f(x) \le \frac{1}{2}$
- 2. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$ $u_{n+1} = f(u_n)$

- (a) Montrer que, pour tout $n \in \mathbb{N}$ $u_n \in [0, \frac{1}{2}]$
- (b) Montrer que, pour tout $n \in \mathbb{N}$:

$$|u_{n+1} - \ell| \leqslant \frac{1}{2} |u_n - \ell|$$
 puis $|u_n - \ell| \leqslant \frac{1}{2^{n+1}}$

- (c) En déduire que la suite (u_n) converge vers ℓ .
- (d) Ecrire un programme Scilab permettant d'obtenir une valeur approchée de ℓ à 10^{-3} près.

Exercice 15.

Soit $u = (u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = -2$ et la relation de récurrence :

$$\forall n \in \mathbb{N} \quad u_{n+1} = \frac{2u_n}{3 - u_n}$$

- 1. Écrire une fonction function y=suite(n) qui calcule le terme n de cette suite.
- 2. Méthode 1

3

Utilisation d'une suite auxiliaire :

Considérons la suite auxiliaire $v=(v_n)_{n\in\mathbb{N}}$ définie pour $n\in\mathbb{N}$, par $v_n=\frac{u_n}{1-u_n}$

(a) Démontrez que v est une suite géométrique.

- (b) En déduire l'expression de u_n en fonction de n.
- (c) Montrez que u est convergente et précisez sa limite.
- 3. Méthode 2.

Utilisation d'une inégalité :

(a) Montrez que la suite u vérifie

$$\forall n \in \mathbb{N}, |u_{n+1}| \leqslant slant \frac{2}{3} |u_n|$$

(b) En déduire que u converge et déterminez sa limite.

(c) Déterminez un rang n_0 à partir duquel tous les termes de la suite sont dans l'intervalle ouvert $]-10^{-2},10^{-2}[$.

Exercice 16 (suite définie par récurrence et série!). Soit u la suite définie par

$$u_0 \in [0; 1]$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2$.

- 1. Montrer que pour tout entier n on a $u_n \in]0; 1[$.
- 2. Montrer que la suite u est décroissante et étudier sa limite.
- 3. Montrer que la série $\sum u_n^2$ est convergente et calculer sa somme.
- 4. En calculant les sommes partielles, montrer que la série $\sum \ln \left(\frac{u_{n+1}}{u_n} \right)$ est divergente.
- 5. Trouver un équivalent de $\ln\left(\frac{u_{n+1}}{u_n}\right)$ et en déduire que la nature de la série $\sum u_n$.

Exemples de suites définies implicitement

Exercice 17 (D'après EDHEC 1997).

Pour tout entier naturel n non nul, on note f_n la fonction définie par : $\forall x \in \mathbb{R}_+^*, \ f_n(x) = x - n. \ln(x).$

1. (a) Etudier cette fonction et dresser son tableau de variations.

- (b) En déduire, lorsque n est supérieur ou égal à 3, l'existence de deux réels u_n et v_n solutions de l'équation $f_n(x)=0$ et vérifiants $0< u_n < n < v_n$.
- 2. Etude de la suite $(u_n)_{n\geqslant 3}$.
 - (a) Montrer que $\forall n \geq 3, 1 < u_n < e$.
 - (b) Montrer que $f_n(u_{n+1}) = \ln(u_{n+1})$, puis en conclure que (u_n) est décroissante.
 - (c) En déduire que $(u_n)_{n\geqslant 3}$ converge et montrer, en encadrant $\ln(u_n)$, que $\lim_{n\to +\infty}u_n=1$.
 - (d) Montrer que $\lim_{n\to+\infty}\frac{\ln(u_n)}{u_n-1}=1$; en déduire que $u_n-1\sim\frac{1}{n}$.

Exercice 18 (D'après EDHEC 2008).

Pour tout entier naturel n non nul, on définit la fonction f_n par : $\forall x \in \mathbb{R}$, $f_n(x) = \frac{1}{1 + e^x} + n x$.

- 1. (a) Déterminer, pour tout réel x, $f'_n(x)$ et f''(x).
 - (b) En déduire que la fonction f_n est strictement croissante sur \mathbb{R}
- 2. (a) Montrer que l'équation $f_n(x) = 0$ possède une seule solution sur \mathbb{R} , notée u_n .
 - (b) Montrer que l'on a : $\forall n \in \mathbb{N}^*, \quad \frac{-1}{n} < u_n < 0.$
 - (c) En déduire la limite de la suite (u_n)
 - (d) En revenant à la définition de u_n , montrer que $u_n \sim \frac{-1}{n \to +\infty} \frac{-1}{2n}$.

Exercice 19 (Sans indication!).

Soit $n \in \mathbb{N}$, Montrer que l'équation $x\mathbf{e}^x = n$ possède dans \mathbb{R}_+ , une unique solution x_n . Étudier la limite de $(x_n)_{n \in \mathbb{N}}$.

Autres

Exercice 20.

Soit $u=(u_n)_{n\in\mathbb{N}^*}$ la suite définie par

$$\forall n \in \mathbb{N}^*$$
 $u_n = \sqrt{n + \sqrt{n - 1 + \sqrt{\dots + \sqrt{2 + \sqrt{1}}}}}$

- 1. Écrire une fonction function y=suite(n) qui calcule le terme n de cette suite.
- 2. Montrer que $\lim u_n = +\infty$
- 3. Trouver une relation simple entre u_n et u_{n+1} .
- 4. Montrer que pour $n \in \mathbb{N}^*$, $u_n \leqslant slantn$ et que $u_n = o(n)$
- 5. Trouver un équivalent simple de (u_n) .
- 6. Trouver la limite de $u_n \sqrt{n}$

Exercice 21.

On pose pour n entier strictement plus grand que $1\,$

$$S_n = \sum_{k=1}^{n} (-1)^k \frac{1}{k}$$

- 1. Montrer que $(S_{2n})_n$ et $(S_{2n+1})_n$ sont adjacentes.
- 2. En déduire la convergence de la suite $(S_n)_{n\in\mathbb{N}}$.
- 3. La série converge-t'elle absolument?