2020-2021 ECE 2

CONVERGENCES.

Préliminaires

Exercice 1 (Manipulation de valeurs absolues).

Enlever les valeurs absolues dans les événements suivants, exemple [|X|=0]=[X=0]

- 1. $[|X| \le 3]$
- 2. $[|X| \geqslant 4]$
- 3. $[|X-1| \leq 2]$
- 4. $[|X+2| \le 1]$
- 5. $||X 1| \ge 1$

Exercice 2.

Soit X une variable aléatoire à valeurs réelles et soit $r \in \mathbb{N}^*$. On suppose que X admet un moment d'ordre r Montrer l'inégalité suivante

$$\forall a \in \mathbb{R}_+^* \qquad \mathbb{P}(|X|^r \geqslant a) \leqslant \frac{E(|X|^r)}{a}$$

Inégalité de Markov et loi faible des grands nombres

Exercice 3.

On veut répondre à la question « Combien faut il faire de lancers (indépendants) d'une pièce non truquée pour que la fréquence d'apparition de pile ne s'écarte pas de plus de 0.05 de 1/2 avec une probabilité de 99% »?

On note X_n la variable aléatoire de Bernouilli liée au n-ième lancer, et

$$Y_n = \frac{X_1 + \dots + X_n}{n}$$

- 1. Que représente Y_n ?
- 2. Calculer $E(Y_n)$ et $V(Y_n)$.

3. Écrire « pour que la fréquence d'apparition de pile ne s'écarte pas de plus de 0.05 de 1/2 avec une probabilité de 99% »sous la forme

$$\mathbb{P}(\cdots - \cdots) \geqslant \cdots$$

4. En utilisant un théorème du cours répondre à la question.

Exercice 4.

Soit X une variable aléatoire suivant la loi normale réduite centrée. On note Φ sa fonction de répartition. Soit x>0.

- 1. Montrer que $\mathbb{P}(|X| \geqslant x) = 2 2\Phi(x)$
- 2. À l'aide de l'inégalité de Bienaymé-Tchebichev Montrer que

$$\int_{-\infty}^{x} e^{-t^2/2} dt \geqslant \sqrt{2\pi} \left(1 - \frac{1}{2x^2} \right)$$

Exercice 5.

Soit X une variable aléatoire suivant la loi géométrique de paramètre p et $\varepsilon>0$. On pose q=1-p

- 1. Montrer que $\mathbb{P}\left(\left|X-\frac{1}{p}\right|\geqslant\varepsilon\right)\leqslant\frac{q}{p^2\varepsilon^2}$.
- 2. En déduire que $\mathbb{P}\left(X \geqslant \frac{2}{p}\right) \leqslant q$

Exercice 6.

Soit (X_i) une suite de variable aléatoires indépendantes suivant toutes la loi $\mathcal{B}(p_i)$.

- 1. On pose $\overline{X_n} = \frac{X_1 + \cdots + X_n}{n}$. Calculer $E(\overline{X_n})$ et $V(\overline{X_n})$.
- 2. Montrer que $V(\overline{X_n}) \leqslant \frac{1}{n}$
- 3. Écrire l'inégalité de Bienaymé-Tchebichev pour $\overline{X_n}$
- 4. en déduire

$$\forall \varepsilon > 0 \lim_{n \to +\infty} \mathbb{P}\left(\left| \overline{X_n} - \frac{1}{n} \sum_{k=1}^n p_k \right| < \varepsilon \right) = 1$$

Convergence

Exercice 7.

Soit $X_n \hookrightarrow \mathcal{P}(1/n)$

- 1. Rappeler la loi de X_n .
- 2. Montrer que X_n converge en loi vers une variable aléatoire quasi-certaine.

Exercice 8.

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variable aléatoire réelles suivant toutes une loi uniforme sur $]0;\ 1[$ et indépendantes. On note pour $n\in\mathbb{N}$

$$M_n = \max(X_1, \dots X_n)$$

- 1. Calculer la fonction de répartition de M_n .
- 2. Montrer que M_n est une variable à densité et calculer une densité de M_n .
- 3. On pose $Y_n = n(1 M_n)$
 - (a) Quelles sont les valeurs prises par Y_n .
 - (b) Trouver la fonction de répartition de Y_n .
 - (c) Montrer que Y_n converge en loi vers une variable usuelle

Exercice 9.

On dit qu'une variable aléatoire X suit la loi de Rademacher de paramètre $p \in]0; 1[$ si

$$X(\Omega) = \{-1, 1\} \qquad \mathbb{P}(X = 1) = p$$

On note alors

$$X \hookrightarrow \mathscr{R}ad(p)$$

- 1. Donner la loi (complète) de X, son espérance et sa variance.
- 2. Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite de variable aléatoire suivant toute la loi $\mathcal{R}ad(p)$ et indépendantes. On note pour $n\in\mathbb{N}^*$

$$V_n = \prod_{k=1}^n X_k$$

- (a) Quel est le support de V_n ? La loi de V_n peut-elle être calculer simplement?
- (b) Calculer $E(V_n)$.
- (c) On pose pour $n \in \mathbb{N}$

$$\alpha_n = \mathbb{P}(V_n = 1)$$

Donner la loi de V_n en fonction de α_n ainsi que son espérance en fonction de α_n .

- (d) à l'aide des deux questions précédentes calculer α_n . En déduire la loi de V_n
- (e) Montrer que $(V_n)_{n\in {}^*_N}$ converge en loi vers une variable aléatoire simple.
- 3. Reprendre l'exercice précédent avec $X_i \hookrightarrow \mathcal{R}ad\left(\frac{1}{n}\right)$.

Théorème limite central

Exercice 10.

Chaque année, un professeur effectue, deux fois par jour, 5 jours par semaine et pendant 46 semaines, un trajet en voiture dont la durée est une variable aléatoire X qui suit une loi d'espérance 45 minutes et d'écart-type 10 minutes. On suppose que les durées des trajets sont mutuellement indépendantes.

On veut répondre à la question Quelle est la probabilité pour qu'il passe au moins 350 heures dans sa voiture au cours de l'année? *Données*

$$\frac{21000 - 45 \times 460}{\sqrt{46000}} \approx 1.4 \qquad \Phi(1.4) \approx 0.0808$$

- 1. On note X_i la durée en minutes du trajets numéro i. Exprimer la probabilité recherchée à l'aide des $X_1, X_2, ..., X_n$
- 2. En se ramenant à une approximation avec la loi normale centrée réduite répondre à la question posée.

Exercice 11.

2

 $(X_n)_{n\in\mathbb{N}^*}$ une suite de variable aléatoire réelles suivant toutes une loi géométrique de même paramètre $p\in]0;$ 1[.

On pose
$$\overline{X_n} = \frac{\dot{X}_1 + \dots + \dot{X}_n}{n}$$
.

- 1. Calculer l'espérance μ et l'écart type σ de $\overline{X_n}$.
- 2. En utilisant le bon théorème du cours montrer que

$$\lim_{n \to +\infty} \mathbb{P}(0 \leqslant \overline{X_n} - \mu \leqslant \sigma) = \frac{1}{\sqrt{2\pi}} \int_0^1 \exp(-t^2/2) \, \mathrm{d}t$$

Approximations à l'aide de la loi normale

Exercice 12 (Approximation d'une loi binomiale par une loi normale :application).

On admet que si n grand (plus grand que 20) et p proche de 0, 5, on peut approcher la loi binomiale $\mathcal{B}(n, p)$ par une loi $\mathcal{N}(np, npq)$

- 1. Pourquoi les coefficients choisis pour la loi normale sont-ils "cohérent"?
- 2. Soit X_1 , X_2 , X_3 trois variables indépendantes suivant la loi $\mathcal{B}(10;0,5)$. On note $S=X_1+X_2+X_3$
 - (a) Quel est la loi de S? Donner son espérance m et sa variance σ^2 .
 - (b) On veut approcher S par une loi normale , donner les paramètres de cette loi.
 - (c) On assimile maintenant S à cette loi normale , quelle est la loi suivie par $\frac{S-m}{\sigma}.$
 - (d) On admet que $\Phi\left(\frac{3}{\sqrt{7.5}}\right)\approx 0,86.$ Donner une valeur approchée de $\mathbb{P}(S\geqslant 12)$

Exercice 13.

Dans ce qui suit, tous les résultats seront arrondis deux chiffres après la virgule. On reprendre le cadre de l'exercice 12

Pour les valeurs approchées de la fonction de répartition on cherchera sur internet « table loi normale ».

Dans une revue on peut lire : « On estime à 60,5% le pourcentage de Français partant au moins une fois en vacances dans le courant de l'année ». On considère 100 personnes prises au hasard avec remise dans la population française. On désigne par X la variable aléatoire mesurant, parmi ces 100 personnes, le nombre de celles qui ne partent pas en vacances dans le courant de l'année.

- 1. Donner la loi de *X*, son espérance et sa variance.
- 2. Calculer une valeur approchée de l'événement « au moins 45 personnes parmi les 100 ne partent pas en vacances dans le courant de l'année »
- 3. Calculer une valeur approchée de l'événement « au plus 30 personnes parmi les 100 ne partent pas en vacances dans le courant de l'année »

Exercice 14 (Approximation d'une loi de Poisson par une loi normale). On admet que si λ grand (plus grand que 15), on peut approcher la loi de Poisson $\mathcal{P}(\lambda)$ par une loi $\mathcal{N}(\lambda,\lambda)$.

- 1. Pourquoi les coefficients choisis pour la loi normale sont-ils "cohérent"?
- 2. Soit X_1, X_2, X_3 trois variables indépendantes suivant la loi $\mathcal{P}(30)$. On note $S=X_1+X_2+X_3$
 - (a) Quel est la loi de S? Donner son espérance m et sa variance μ .
 - (b) On veut approcher $\frac{S-m}{\sigma}$ par une loi normale, donner les paramètres de cette loi.

(c) On admet que $\Phi\left(\sqrt{1}0\right)\approx0,99.$ Donner une valeur approchée de $\mathbb{P}(S\geqslant60)$

Pour aller plus loin

Exercice 15.

On considère une suite $(\Delta_n)_{n\in\mathbb{N}^*}$ de variables aléatoires toutes définies sur un même espace probabilisé $(\Omega,\mathcal{A},\mathbb{P})$, indépendantes, strictement positives et suivant toute la même loi exponentielle d'espérance 1. On pose $T_0=0$ et pour tout entier naturel non nul

$$T_n = \sum_{k=1}^n \Delta_k$$

- 1. Déterminer l'espérance et la variance de T_n .
- 2. Soit t un réel positif ou nul
 - (a) Justifier que

$$\forall n > t$$
 $[T_n < t] \subset [|T_n - n| \geqslant n - t]$

(b) En déduire à l'aide de l'inégalité de Bienaymé-Tchebichev la valeur de

$$\lim_{n \to +\infty} \mathbb{P}(T_n < t)$$

(c) Montrer que l'évènement $\bigcap_{k=0}^{+\infty} [T_n < t]$ est de probabilité nulle.

Exercice 16.

3

Soit (X_n) une suite de variables aléatoires toutes indépendantes et qui suivent $\mathcal{P}(1)$

- 1. On pose $S_n = \sum_{k=1}^n X_k$ rappeler la loi de S_n . Donner $E(S_n)$ et $V(S_n)$.
- 2. Montrer que

$$\mathbb{P}(S_n - E(S_n) \leqslant 0) = \sum_{k=0}^n \frac{e^{-n} n^k}{k!}$$

3. En utilisant le théorème centrale limite montrer que

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\mathrm{e}^{-n} n^k}{k!} = \frac{1}{2}$$

Exercice 17.

Soit X une variable dont la fonction de répartition est notée F et une densité f. Pour $n \in \mathbb{N}$, on note $X_n = Xe^{\frac{1}{n}}$

- 1. Calculer la fonction de répartition de X_n en fonction de F.
- 2. Montrer que X_n admet une densité et la calculer en fonction de F
- 3. Montrer que (X_n) converge en loi vers X

Exercice 18.

On dit qu'une variable aléatoire Y suit une loi de Gumbel si elle admet pour densité $f(x) = e^{-x-e^{-x}}$.

- 1. Vérifier que f est une densité, et calculer la fonction de répartition de Y.
- 2. Soit (X_n) une suite de variables aléatoires indépendantes identiquement distribuées de loi exponentielle de paramètre 1. On pose $M_n = \max(X_1, \dots, X_n)$. Démontrer que la suite $(M_n \ln n)$ converge en loi vers Y suivant une loi de Gumbel.
- 3. Écrire un script Scilab permettant d'illustrer ce résultat!,

Exercice 19.

Pour tout entier naturel n non nul, on considère la fonction f_n définie par

$$f_n(x) = \begin{cases} n^2 x \exp\left(-n^2 x^2/2\right) & \text{si } x \geqslant 0\\ 0 & \text{sinon} \end{cases}.$$

- 1. Montrer que f_n est la densité d'une variable aléatoire dont on calculera la fonction de répartition.
- 2. Soit (X_n) une suite de variables aléatoires telle que, pour tout entier $n \ge 1$, X_n admet pour densité f_n . Démontrer que la suite (X_n) converge en loi vers une variable aléatoire X que l'on précisera.

Exercice 20.

Soit X une variable aléatoire suivant la loi $\mathcal{U}([a;b])$. On note m son espérance et σ son écart type.

- 1. Calculer $\mathbb{P}(X \in [m \sigma; m + \sigma])$
- 2. Calculer $\mathbb{P}(|X m| \leq \sigma)$
- 3. Calculer $\mathbb{P}(|X m| > \sigma)$