

DL mathématiques n°2 Réponses

Soit N un entier naturel supérieur ou égal à 2 .

Une urne contient une boule blanche, une boule verte et N-2 boules rouges. Ces boules sont indiscernables au toucher.

On tire successivement les N boules sans remettre les boules tirées dans l'urne. On note X_1 la variable aléatoire égale au rang du tirage de la boule blanche et X_2 la variable aléatoire égale au rang du tirage de la boule verte.

1. Soient i et j deux entiers compris entre 1 et N. Calculer la probabilité P_{ij} pour que $X_1 = i$ et $X_2 = j$. (On distinguera le cas i = j et le cas $i \neq j$).

RÉPONSE:

Dans la suite on note pour tout entier $k \in [1, N]$

- R_k l'événement « une bille rouge est tirée au k-ième tirage ».
- B_k l'événement « une bille blanche est tirée au k-ième tirage ».
- V_k l'événement « une bille verte est tirée au k-ième tirage ».

Si i=j, alors comme il est impossible que les boules blanche et verte soit tirées au même moment

$$\mathbb{P}([X_1=i]\cap [X_2=i])=0$$

Supposons maintenant que i < j. Comme toutes les autres billes sont rouges on peu écrire

$$[X_1 = i] \cap [X_2 = j] = \left(\bigcup_{k=1}^{i-1} R_k\right) \cup B_i \cup \left(\bigcup_{k=i+1}^{j_i} R_k\right) \cup V_j$$

On peut utiliser le théorème des probabilités composées.

$$\begin{split} &\mathbb{P}([X_{1}=i]\cap[X_{2}=j]) \\ &= \mathbb{P}\left(\left(\bigcup_{k=1}^{i-1}R_{k}\right)\cup B_{i}\cup\left(\bigcup_{k=i+1}^{j}R_{k}\right)\cup V_{j}\right) \\ &= \mathbb{P}(R_{1})\mathbb{P}_{R_{1}}(R_{2})\mathbb{P}_{R_{1}\cap R_{2}}(R_{3})\cdots\mathbb{P}_{R_{1}\cap \cdots \cap R_{i-1}(B_{i})}\mathbb{P}_{R_{1}\cap \cdots \cap B_{i}}(R_{i+1})\cdots\mathbb{P}_{R_{1}\cap \cdots \cap B_{i}\cap R_{i+1}\cap \cdot R_{j-1}}(R_{i+1}) \\ &= \frac{N-2}{N}\times\frac{N-3}{N-1}\times\cdots\times\frac{N-2-(i-2)}{N-(i-2)}\times\frac{1}{N-(i-1)}\times\frac{N-(i-1)}{N-i}\times\\ &\cdots\times\frac{N-2-(j-1)}{N-(j-2)}\times\frac{1}{N-(j-1)} \\ &= \frac{N-2}{N-1}\times\frac{N-3}{N-2}\times\cdots\times\frac{N-i}{N-i+2}\times\frac{1}{N-i+1}\frac{N-i-1}{N-i}\times\cdots\times\frac{N-j+1}{N-j+2}\times\frac{1}{N-j+1} \\ &= \frac{\prod_{k=2}^{j-1}(N-k)}{\prod_{k=0}^{j-1}(N-k)} \\ &= \frac{1}{N(N-1)} \end{split}$$

Au ième tirage il y a toujours N - (i - 1) boules dans l'urne

Remarque : l'écriture est un peu différente dans les cas i=1, ou i+1=j, mais on obtient toujours le même résultat.

On obtiendrait aussi le même résultat pour i > j

Pour
$$i$$
 et j deux entiers de $[\![1,\,N]\!]$ si $i=j$ alors $p_{i,j}=0$, sinon $p_{i,j}=\frac{1}{NN-1}$

*

2. Déterminer les lois des variables aléatoires X_1 et X_2 . Est-ce que les variables aléatoires X_1 et X_2 sont indépendantes? Calculer les espérances et variances des variables aléatoires X_1 et X_2 . RÉPONSE: Soit $i \in [1, N]$, on va utiliser le théorème des probabilités composées avec le système complet d'événements $([X_2 = j])_{j \in [1, N]}$

$$P(X_1=i) = \sum_{j=1}^N \mathbb{P}([X_1=i] \cap [X_2=j])$$
 probabilités totales
$$= \sum_{\substack{j \in [\![1,N]\!] \\ j \neq i}}^N \frac{1}{N(N-1)} + 0$$
 question précédente, il ya une valeur nulle
$$= \frac{N-1}{N(N-1)} = \frac{1}{N}$$

Les lois de X_1 et X_2 sont les lois uniformes sur [1, N]

On a $\mathbb{P}([X_1=1]\cap [X_2=1])=0$ mais d'après le résultat précédent $\mathbb{P}(X_1=1)\neq 0$ et $\mathbb{P}(X_2=1)\neq 0$ donc

$$\mathbb{P}([X_1 = 1] \cap [X_2 = 1]) \neq \mathbb{P}(X_1 = 1)\mathbb{P}(X_2 = 1)$$

Les deux variables aléatoires X_1 et X_2 ne sont pas indépendantes.

Comme X_1 et X_2 sont deux variables aléatoires de loi uniforme sur $[\![1,\,N]\!]$ on sait que

L'espérance est
$$E(X_1)=E(X_2)=\frac{N+1}{2}$$
 et leur variance $V(X_1)=V(X_2)=\frac{N^2-1}{12}$

*

3. On note X la variable aléatoire égale au rang du tirage où l'on obtient pour la première fois soit la boule blanche soit la boule verte. On note Y la variable

aléatoire égale au rang du tirage à partir duquel on a obtenu la boule blanche et la boule verte.

Remarque : en fait $X = \inf (X_1, X_2)$ et $Y = \sup (X_1, X_2)$

Par exemple, si on a tiré rouge, rouge, verte, rouge, blanche, alors $X_1=5$ et $X_2=3$ et X=3 et Y=5

Déterminer les lois des variables aléatoires X et Y.

Calculer les espérances des variables aléatoires X et Y.

RÉPONSE:

Méthode 1 On a pour $k \in [1, N]$

$$[X = k] = \left[\left(\bigcap_{k=1}^{i-1} R_i \right) \cap B_k \right] \cup \left[\left(\bigcap_{k=1}^{i-1} R_i \right) \cap V_k \right]$$

Comme les deux événements de cette union sont incompatibles

$$\mathbb{P}(X=k) = \mathbb{P}\left(\left(\bigcap_{k=1}^{i-1} R_i\right) \cap B_k\right) + \mathbb{P}\left(\left(\bigcap_{k=1}^{i-1} R_i\right) \cap V_k\right)$$

En utilisant le théorème des probabilités composées comme dans la première question

$$\mathbb{P}(X=k) = \frac{N-2}{N} \times \frac{N-3}{N-1} \times \dots \times \frac{N-k}{N-k+2} \times \frac{1}{N-k+1} + \frac{N-2}{N} \times \frac{N-3}{N-1} \times \dots \times \frac{N-k}{N-k+2} \times \frac{1}{N-k+1}$$
$$= 2\frac{N-k}{N(N-1)}$$

Méthode 2 On commence par constater que [X = N - 1] est impossible. Pour $i \in [1, N - 1]$, pour que l'événement [X = i] se réalise, il faut que l'on ait la bille verte au rang i et la bille blanche après ou le contraire

$$[Y=i] = \left([X_1=i] \cap \bigcup_{j=i+1}^{N} [X_2=j] \right) \cup \left([X_2=i] \cap \bigcup_{j=i+1}^{N} [X_1=i] \right)$$

donc

$$[Y = i] = \left(\bigcup_{j=i+1}^{N} [X_1 = i] \cap [X_2 = j]\right) \cup \left(\bigcup_{j=i+1}^{N} [X_2 = i] \cap [X_1 = j]\right)$$

Comme tous ces événements sont indépendants 2 à 2

$$\mathbb{P}(Y = i) = \sum_{j=i+1}^{N} p_{i,j} + \sum_{j=i+1}^{N} p_{j,i}$$

En utilisant la question 1

$$\mathbb{P}(Y = i) = \sum_{j=i+1}^{N} \frac{1}{N(N-1)} + \sum_{j=i+1}^{N} \frac{1}{N(N-1)}$$

$$= \frac{2}{N(N-1)} \sum_{j=i+1}^{n} 1$$

$$= 2 \frac{N - (i+1) + 1}{N(N-1)}$$

$$= \frac{N-i}{N(N-1)}$$

Pour
$$k \in [\![1,\,N]\!] \ \mathbb{P}(X=k) = 2 \frac{N-k}{N(N-1)}$$

Remarque : Quand k = N alors la probabilité est nulle ce qui est normale car le minimum d'apparition d'une des deux billes colorées.

Maximum Pour le maximum utilisons la méthode 2, (on peut aussi s'inspirer de la méthode 1)

On commence par constater que Y=1 est impossible car la deuxième bille non rouge ne peut pas arriver en position 1. Pour $k \in [2, N]$

$$[Y = k] = \left[\left(\bigcup_{j=1}^{k-1} [X_1 = j] \right) \cap [X_2 = k] \right] \cup \left[\left(\bigcup_{j=1}^{k-1} [X_2 = j] \right) \cap [X_1 = k] \right]$$
$$= \left[\bigcup_{j=1}^{k-1} [([X_1 = j] \cap [X_2 = k])] \right] \cup \left[\bigcup_{j=1}^{k-1} [([X_1 = j] \cap [X_2 = k])] \right]$$

Comme tous ces évènements sont incompatibles 2 à 2

$$\begin{split} \mathbb{P}(Y=k) &= \sum_{j=1}^{k-1} p_{j,k} + \sum_{j=1}^{k-1} p_{k,j} \\ &= \sum_{j=1}^{k-1} \frac{1}{N(N-1)} + \sum_{j=1}^{k-1} \frac{1}{N(N-1)} \\ &= \frac{2}{N(N-1)} \sum_{j=1}^{k-1} 1 \end{split} \qquad \text{question 1}$$

$$\boxed{ \text{Pour } k \in \llbracket 1,\, N \rrbracket \; \mathbb{P}(Y=k) = 2\frac{k-1}{N(N-1)} }$$

Remarque : Quand k=1 alors la probabilité est nulle ce qui est normale. Les deux variables aléatoires sont à support fini donc elles admettent une espé-

rance.

$$E(X) = \sum_{k=1}^{N} k \mathbb{P}(X = k)$$

$$= \sum_{k=1}^{N-1} 2k \frac{N - k}{N(N-1)}$$

$$= \frac{2}{N(N-1)} \sum_{k=1}^{N-1} k(N-k)$$

$$= \frac{2}{N(N-1)} \left(\sum_{k=1}^{N-1} kN - \sum_{k=1}^{N-1} k^2 \right)$$

$$= \frac{2}{N(N-1)} \left(N \sum_{k=1}^{N-1} k - \sum_{k=1}^{N-1} k^2 \right)$$

$$= \frac{2}{N(N-1)} \left(N \frac{(N-1)N}{2} - \frac{(N-1)(N)(2N-1)}{6} \right)$$

$$= N - \frac{2N-1}{3}$$

$$= \frac{N+1}{3}$$

Remarque : l'espérance est bien comprise entre et N.

$$E(Y) = \sum_{k=1}^{N} k \mathbb{P}(Y = k)$$

$$= \sum_{k=1}^{N} 2k \frac{k-1}{N(N-1)}$$

$$= \frac{2}{N(N-1)} \sum_{k=1}^{N} k^2 - k$$

$$= \frac{2}{N(N-1)} \left(\frac{N(N+1)(2N+1)}{6} - \frac{N(N+1)}{2} \right)$$

$$= \frac{2(N+1)}{N-1} \left(\frac{(2N+1)}{6} - \frac{3}{6} \right)$$

$$= \frac{2(N+1)}{N-1} \left(\frac{(N-1)}{3} \right)$$

$$= \frac{2(N+1)}{3}$$

Méthode alternative On remarque que pour tout réels a et b

$$a + b = \max(a, b) + \min(a, b)$$

Ce qui donne dans le cas des variables X_1 , X_2

$$X_1 + X_2 = X + Y$$

Comme l'espérance est linéaire

$$E(X_1) + E(X_2) = E(X) + E(Y)$$

Une fois que l'on a calculer ${\cal E}(Y)$ de la façon précédente, on peut en déduire

$$E(X) = 2\frac{N+1}{2} - \frac{2(N+1)}{3} = \frac{N+1}{3}$$

*