EM LYON 2017 voie E

Exercice 1:

On considère la fonction $f:]0; +\infty[\to \mathbb{R}$ définie, pour tout x de $]0; +\infty[$, par :

$$f(x) = e^x - e \ln(x)$$

On admet les encadrements numériques suivants :

$$2,7 < e < 2,8$$
 $7,3 < e^2 < 7,4$ $0,6 < ln(2) < 0,7$

Partie I : Etude de la fonction f

- 1. (a) Montrer que f est deux fois dérivable sur $]0; +\infty[$ et calculer, pour tout x de $]0; +\infty[$, f'x) et f''(x).
 - (b) Dresser le tableau de variations de f' avec la limite de f' en 0 et la limite de f' en $+\infty$ et préciser f'(1).
- 2. Dresser le tableau de variations de f avec la limite de f en 0 et la limite de f en $+\infty$ et préciser f(1).
- 3. Tracer la courbe représentative de f.
- 4. (a) Etudier les variations de la fonction $u:]0; +\infty[\to \mathbb{R}, x \mapsto f'(x) x.$
 - (b) En déduire que l'équation f'(x) = x, d'inconnue $x \in]0; +\infty[$, admet une solution et une seule, notée α , et montrer : $1 < \alpha < 2$.

Partie II: Etude d'une suite, étude d'une série

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 2$$
 et, pour tout n de \mathbb{N} , $u_{n+1} = f(u_n)$

- 5. Montrer que, pour tout n de \mathbb{N} , u_n existe et $u_n \ge 2$.
- 6. (a) Etudier les variations, puis le signe, de la fonction $g:[2;+\infty[\to\mathbb{R}, x\mapsto f(x)-x]]$
 - (b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 7. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ admet $+\infty$ pour limite.
- 8. Ecrire un programme en Python qui, étant donné un réel A, renvoie un entier naturel N tel que $u_N \geqslant A$.
- 9. (a) Démontrer : $\forall x \in [2; +\infty[, 2\ln(x) \le x \le \frac{e^x}{3}]$
 - (b) En déduire : $\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant \frac{6-e}{2}u_n.$
 - (c) Déterminer la nature de la série de terme général $\frac{1}{u_n}$.

Partie III : Étude d'intégrales généralisées

- 10. Montrer que l'intégrale $\int_0^1 f(x)dx$ converge et calculer cette intégrale.
- 11. L'intégrale $\int_{1}^{+\infty} f(x)dx$ converge-t-elle?
- 12. Montrer que $\int_2^{+\infty} \frac{1}{f(x)} dx$ converge. On pourra utiliser le résultat de la question 9. (a).

Partie IV : Étude d'une fonction de deux variables réelles

On considère la fonction $F:]1;+\infty[^2\to\mathbb{R}$, de classe C^2 sur l'ouvert $]1;+\infty[^2$, définie pour tout (x,y) de $]1;+\infty[^2$ par :

$$F(x,y) = f(x) + f(y) - xy$$

- 13. Montrer que F admet un point critique et un seul et qu'il s'agit de (α, α) , le réel α ayant été défini à la question 4 de la partie I.
- 14. (a) Déterminer la matrice hessienne de F en (α, α) .
 - (b) La fonction F admet-elle un extremum local en (α, α) ? Si oui, s'agit-il d'un maximum local ou s'agit-il d'un minimum local?

Exercice 2:

On note $E = \mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à 2 et $\mathcal{B} = (1, X, X^2)$ la base canonique de E.

Pour tout polynôme P de E, on note indifféremment P ou P(X).

Pour tout $(\alpha, \beta, \gamma) \in \mathbb{R}^3$, la dérivée P' du polynôme $P = \alpha + \beta X + \gamma X^2$ est le polynôme $P' = \beta + 2\gamma X$ et la dérivée seconde P'' de P est le polynôme $P'' = 2\gamma$.

On note, pour tout polynôme P de E :

$$a(P) = P - XP',$$
 $b(P) = P - P',$ $c(P) = 2XP - (X^2 - 1)P'$

Par exemple, $a(X^2) = X^2 - X(2X) = -X^2$.

Enfin, on note $f = b \circ a - a \circ b$.

Partie I : Étude de a

- 1. Montrer que a est un endomorphisme de E.
- 2. (a) Montrer que la matrice de A de a dans la base \mathcal{B} de E est : $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.
 - (b) Déterminer le rang de la matrice A.
- 3. L'endomorphisme a est-il bijectif? Déterminer Ker(a) et Im(a).

On admet, pour la suite de l'exercice, que b et c sont des endomorphismes de E.

On note B et C les matrices, dans la base $\mathcal B$ de E, de b et c respectivement.

Partie II : Étude de b

- 4. Montrer que b est bijectif et que, pour tout Q de E, on a : $b^{-1}(Q) = Q + Q' + Q''$.
- 5. (a) Montrer que b admet une valeur propre et une seule et déterminer celle-ci.
 - (b) L'endmorphisme b est-il diagonalisale?

Partie III : Étude de c

- 6. Montrer: $C = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$.
- 7. L'endomorphisme c est-il bijectif?
- 8. (a) Déterminer une matrice R, carrée d'ordre 3, inversible, dont les coefficients de la première ligne sont tous égaux à 1, et une matrice D, carrée d'ordre trois, diagonale, à coefficients diagonaux dans l'ordre croissant, telles que $C = RDR^{-1}$.
 - (b) En déduire que l'endormophisme c est diagonalisable et déterminer une base de E constituée de vecteurs propres de c.

Partie IV : Étude de f

- 9. Montrer que $\forall P \in E$, f(P) = P'.
- 10. En déduire : $(BA AB)^3 = 0$.

Exercice 3:

On considère une urne contenant initialement une boule bleue et deux boules rouges.

On effectue, dans cette urne, des tirages successifs de la façon suivante : on pioche une boule au hasard, on note sa couleur, puis on la replace dans l'urne en ajoutant une boule de la même couleur que celle qui vient d'être obtenue.

```
Pour tout k de \mathbb{N}^*, on note : 
 B_k l'événement : "on obtient une boule bleue au k-ième tirage" 
 R_k l'événement : "on obtient une boule rouge au k-ième tirage"
```

Partie I: Simulation informatique

1. Recopier et compléter la fonction suivante afin qu'elle simule l'expérience étudiée et renvoie le nombre de boules rouges obtenues lors des n premiers tirages, l'entier n étant entré en argument.

```
import numpy as np
  import numpy.random as rd
  def EML(n):
      b=1 # b désigne le nombre de boules bleues présentes dans l
                                  de boules
      s=0 # s désigne le nombre de boules rouges
      for k in range (1, n+1):
9
           x=rd.rand()
10
           if ...:
11
12
           else:
13
  return s
```

2. On exécute le programme suivant :

On obtient 6.657. Comment interpréter ce résultat?

Partie II : Rang d'apparition de la première boule bleue et rang d'apparition de la première h

On définit la variable aléatoire Y égale au rang d'apparition de la première boule bleue et la variable aléatoire Z égale au rang d'apparition de la première boule rouge.

```
3. (a) Montrer : \forall n \in \mathbb{N}^*, P([Y=n]) = \frac{2}{(n+1)(n+2)}.
```

(b) La variable aléatoire Y admet-elle une espérance? une variance?

Partie III : Nombre de boules rouges obtenues au cours de n tirages

On définit, pour tout k de \mathbb{N}^* , la variable aléatoire X_k égale à 1 si on obtient une boule rouge au k-ième tirage et égale à 0 sinon.

On définit, pour tout n de \mathbb{N}^* , la variable aléatoire S_n égale au nombre de boules rouges au cours des n premiers tirages.

4. Donner, pour tout n de \mathbb{N}^* , une relation entre S_n et certaines variables aléatoires X_k pour $k \in \mathbb{N}^*$.

- 5. Déterminer la loi de X_1 , son espérance et sa variance.
- 6. (a) Déterminer la loi du couple (X_1, X_2) .
 - (b) En déduire la loi de X_2 .
 - (c) Les variables aléatoires X_1 et X_2 sont-elles indépendantes?
- 7. Soit $n \in \mathbb{N}^*$ et $k \in [0; n]$.
 - (a) Calculer $P(R_1 \cap ... \cap R_k \cap B_{k+1} \cap ... \cap B_n)$.

(b) Justifier:
$$P([S_n = k]) = \binom{n}{k} P(R_1 \cap \ldots \cap R_k \cap B_{k+1} \cap \ldots \cap B_n),$$

puis en déduire: $P([S_n = k]) = \frac{2(k+1)}{(n+1)(n+2)}$

- 8. Montrer que, pour tout n de \mathbb{N}^* , S_n admet une espérance et : $\mathrm{E}(S_n) = \frac{2n}{3}$
- 9. Soit $n \in \mathbb{N}^*$.
 - (a) Montrer: $\forall k \in [0; n]$, $P_{[S_n = k]}([X_{n+1} = 1]) = \frac{k+2}{n+3}$
 - (b) En déduire : $P\left([X_{n+1}=1]\right) = \frac{E(S_n)+2}{n+3}.$
 - (c) Déterminer alors la loi de la variable aléatoire X_{n+1} . Que remarque-t-on?

Partie IV : Étude d'une convergence en loi

On s'intéresse dans cette partie à la proportion de boules rouges obtenues lors des n premiers tirages. On pose, pour tout n de \mathbb{N}^* , $T_n = \frac{S_n}{n}$.

- 10. Justifier, pour tout n de \mathbb{N}^* : $\forall x < 0$, $P([T_n \leqslant x]) = 0$, et : $\forall x > 1$, $P([T_n \leqslant x]) = 1$. 11. Soit $x \in [0;1]$. Montrer, pour tout n de \mathbb{N}^* : $P([T_n \leqslant x]) = \frac{(\lfloor nx \rfloor + 1)(\lfloor nx \rfloor + 2)}{(n+1)(n+2)}$ où $\lfloor . \rfloor$ désigne la fonction partie entière.
- 12. En déduire que la suite de variables aléatoires $(T_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire à densité, dont on précisera la fonction de répartition et une densité.