TD 5 - réduction des matrices

Exercice 1

Soit A_1, A_2, A_3, A_4 les matrices respectives suivantes

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

- 1. Trouver une relation entre A_1 et A_1^2 , que peut-on en déduire?
- **2.** Montrer que $U = {}^{t}\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ et $V = {}^{t}\begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$ sont vecteurs propres respectivement de A_1 et A_4 , et en déduire pour chacune une valeur propre.
- 3. A_4 est-elle inversible, que peut-on en déduire?
- 4. Sans utiliser les résultats précédents, rechercher les valeurs propres et les sous-espaces propres des matrices, en résolvant des systèmes linéaires.

Exercice 2

Soit
$$A = \begin{pmatrix} -1 & 3 & 2 \\ -2 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$
 Déterminer les valeurs propres de A et les sous-espaces propres associés. On trouvera $\operatorname{Sp}(A) = \{0, 1, 2\}$.

Exercice 3

Soit
$$A = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & 4 \\ 2 & -2 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

- 1. Montrer que $(B-I_3)(B^2+I_3)=0$. En déduire les valeurs propres de B et les sous-espaces propres associés.
- **2.** La matrice B est-elle diagonalisable?

3. Soit $P = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$. Montrer que P est inversible et calculer P^{-1}

4. Vérifier que $P^{-1}AP = B$. La matrice A est-elle diagonalisable?

Exercice 4

Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 3 \\ 1 & 1 & -1 \end{pmatrix}$$
 1. Montrer que $\lambda \in \operatorname{Sp}(A)$ si, et seulement si : $\lambda^3 - 3\lambda + 1 = 0$ 2. Soit $\varphi(x) = x^3 - 3x + 1$ pour $x \in \mathbb{R}$ a. Déterminer les variations de φ

- **b.** En déduire que A admet 3 valeurs propres distinctes $\lambda_1, \lambda_2, \lambda_3$ vérifiant : $\lambda_1 < -1$ et $0 < \lambda_2 < 1 < \lambda_3 < 2$
 - **3.** Montrer que A est diagonalisable.

Exercice 5

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ **1.** Sans calcul, justifier que A est diagonalisable. **2.** Montrer que $A^3 = A^2 + 2A$. Sans résoudre de système linéaire, montrer que $\operatorname{Sp}(A) \subset \{-1,0,2\}$
 - **3.** Déterminer les valeurs propres de A et les sous-espaces propres associés.
 - 4. Retrouver que A est diagonalisable. Déterminer une matrice D diagonale et une matrice inversible P telle que $A = PDP^{-1}$
 - 5. Soit $M \in \mathcal{M}_3(\mathbb{R})$ et $N = P^{-1}MP$
 - **a.** Montrer que $AM + MA = 0 \iff DN + ND = 0$
 - **b.** Déterminer les matrices N telles que DN + ND = 0
 - **c.** En déduire toutes les matrices $M \in \mathcal{M}_3(\mathbb{R})$ vérifiant AM + MA = 0

Exercice 6 - (Edhec)

On considère les matrices
$$A = \begin{pmatrix} 0 & 1 & 1 \\ -2 & 3 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$
 et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1. a. Déterminer $(A-I)^2$
 - **b.** En déduire que A est inversible et écrire A^{-1} comme combinaison linéaire de I et A
- **2.** On pose A = N + I
 - a. Exprimer pour tout entier naturel n, la matrice A^n comme combinaison linéaire de I et N, puis l'écrire comme combinaison linéaire de I et A
 - **b.** Vérifier que l'expression précédente est aussi valable pour n=-1
- 3. a. Utiliser la première question pour déterminer la seule valeur propre de A
 - **b.** En déduire si A est ou n'est pas diagonalisable.
- **4.** On pose U_1 la première colonne de A-I et $U_2={}^{\rm t}(1,0,1)$ Montrer que 1 est une valeur propre de A et que (U_1,U_2) est une base de $E_1(A)$
- **5.** Soit la matrice $P = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$

Justifier l'inversibilité de P et vérifier que $P^{-1}AP=T=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- **6.** a. Montrer que, pour tout $n \in \mathbb{N}$: $T^n = \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 - **b.** Montrer que, pour $n \in \mathbb{N}$ $A^n = PT^nP^{-1}$. Calculer P^{-1} et en retrouver explicitement l'expression de A^n trouvé à la question **2.a.**

- 7. On note $(E_{1,1}, E_{1,2}, E_{1,3}, E_{2,1}, E_{2,2}, E_{2,3}, E_{3,1}, E_{3,2}, E_{3,3})$ la base canonique de $\mathcal{M}_3(\mathbb{R})$ et on rappelle que, pour tout (i,j) de $[\![1,3]\!]^2$, la matrice $E_{i,j}$ n'a que des coefficients nuls sauf celui situé à l'intersection de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne qui vaut 1
 - a. Montrer que l'ensemble E des matrices M qui commutent avec T, c'est-à-dire des matrices vérifiant l'égalité MT = TM, est le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par la famille

$$(E_{1,1} + E_{3,3}, E_{1,2}, E_{1,3}, E_{2,2}, E_{2,3})$$

Vérifier que la dimension de E est égale à 5

- **b.** Soit N une matrice quelconque de $\mathcal{M}_3(\mathbb{R})$. Etablir l'équivalence : $NA = AN \Longleftrightarrow (P^{-1}NP)T = T(P^{-1}NP)$
- c. En déduire que l'ensemble F des matrices qui commutent avec A est le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par la famille : $(P(E_{1,1} + E_{3,3})P^{-1}, PE_{1,2}P^{-1}, PE_{1,3}P^{-1}, PE_{2,2}P^{-1}, PE_{2,3}P^{-1})$

Exercice 7 - (Edhec)

Soit
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

- 1. Justifier que A est diagonalisable.
- 2. Montrer que $P(X) = X^2 2X 3$ est un polynôme annulateur de A
- **3.** Déterminer les valeurs propres de A et les sous-espaces propres associés. Soit $n \in \mathbb{N}$, $n \ge 2$. On admet qu'il existe un polynôme Q_n et deux réels a_n et b_n tels que (division euclidienne) :

$$X^n = Q_n(X)P(X) + a_nX + b_n$$

- **a.** Montrer que $3a_n + b_n = 3^n$ et $b_n a_n = (-1)^n$ En déduire a_n et b_n en fonction de n
- **b.** Exprimer A^n comme combinaison linéaire de A et de I_3 , et en déduire explicitement A^n