ECG 2 - maths appli. Devoir en temps libre n°2 Pour le 10 octobre 2025

Devoir à rendre en binôme, obligatoirement.

Exercice 1

On note
$$A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
 et I la matrice identité de $\mathcal{M}_3(\mathbb{R})$

- **1. a.** Calculer (A 2I)(A + 2I)(A I)
 - **b.** En déduire que A est inversible et déterminer A^{-1}
- **2.** On note $E_2(A) = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AX = 2X\}$
 - a. Résoudre le système suivant : $\begin{cases}
 -2x & + 2z = 0 \\
 & y & = 0 \\
 2x & 2z = 0
 \end{cases}$
 - **b.** Déterminer $E_2(A)$
 - c. En déduire que $E_2(A)$ est un sous-espace vectoriel de $\mathcal{M}_{3,1}(\mathbb{R})$ et déterminer une base de $E_2(A)$
- 3. Déterminer de même une base de $E_1(A)$ et $E_{-2}(A)$, espaces vectoriels définis par :

$$E_1(A) = \{ X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AX = X \}$$
 et $E_{-2}(A) = \{ X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AX = -2X \}$

- **4.** Montrer que la matrice $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ est inversible et déterminer P^{-1}
- 5. Déterminer la matrice $D = P^{-1}AP$

On appelle commutant de A, et on note C_A , l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que : AM = MA

On appelle commutant de D, et on note C_D , l'ensemble des matrices N de $\mathcal{M}_3(\mathbb{R})$ telles que : DN = ND

- 6. Montrer que C_A est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$
- 7. Soit $M \in \mathcal{M}_3(\mathbb{R})$. On note $N = P^{-1}MP$. Montrer : $M \in C_A \Leftrightarrow N \in C_D$
- 8. Déterminer C_D , en utilisant les coefficients des matrices.
- **9.** En déduire : $C_A = \left\{ \begin{pmatrix} a & 0 & b \\ 0 & c & 0 \\ b & 0 & a \end{pmatrix} \middle| (a, b, c) \in \mathbb{R}^3 \right\}$
- 10. Déterminer une base de C_A et la dimension de C_A

Exercice 2

Un mobile se déplace sur un axe d'origine O, et on s'intéressera uniquement aux positions dont les coordonnées sont entières.

Au départ, le mobile est à l'origine.

Le mobile se déplace selon la règle suivante : s'il est sur le point d'abscisse k à l'instant n, alors, à l'instant (n+1) il sera sur le point d'abscisse (k+1) avec la probabilité p (0 ou sur le point d'abscisse <math>0 avec la probabilité 1-p

Pour tout n de \mathbb{N} , on note X_n l'abscisse de ce point à l'instant n et l'on a donc $X_0 = 0$

On admet que, pour tout n de \mathbb{N} X_n définit une variable aléatoire (sur un univers Ω).

Par ailleurs, on note T l'instant auquel le mobile se trouve pour la première fois à l'origine (sans compter son positionnement au départ).

Par exemple, si les abscisses successives du mobile après son départ sont 0, 0, 1, 2, 0, 0, 1, alors on a T=1. Si les abscisses successives sont : 1, 2, 3, 0, 0, 1, alors on a T=4

On admet que T est une variable aléatoire.

- 1. a. Pour tout k de \mathbb{N}^* , exprimer l'événement (T=k) en fonction d'événements mettant en jeu certaines des variables X_i
 - **b.** Donner la loi de X_1
 - **c.** En déduire P(T=k) pour tout k de \mathbb{N}^* , puis reconnaitre la loi de T
- **2.** a. Montrer par récurrence que, pour tout entier naturel $n, X_n(\Omega) = [0, n]$
 - **b.** Pour tout n de \mathbb{N}^* , utiliser le système complet d'événements $(X_{n-1} = k)_{0 \le k \le n-1}$ pour montrer que : $P(X_n = 0) = 1 p$
- **3. a.** Etablir que : $\forall n \in \mathbb{N}, \ \forall k \in \{1, 2, \dots, n+1\}, \ P(X_{n+1} = k) = p P(X_n = k-1)$
 - **b.** En déduire que : $\forall n \in \mathbb{N}^*$, $\forall k \in \{0, 1, 2, ..., n-1\}$, $P(X_n = k) = p^k (1-p)$ En déduire également la valeur de $P(X_n = n)$. Donner une explication probabiliste de ce dernier résultat.
 - **c.** Pour tout $n \in \mathbb{N}$, vérifier que $\sum_{k=0}^{n} P(X_n = k) = 1$
- **4.** Dans cette question et dans cette question seulement, on prend $p = \frac{1}{3}$

Avec Python, et la bibliothèque numpy.random renommée rd, on rappelle que rd.random() renvoie au hasard un nombre réel de l'intervalle [0, 1]

Compléter le programme Python suivant pour qu'il simule l'expérience aléatoire étudiée et affiche la valeur prise par X_n pour une valeur de n entrée par l'utilisateur.

- **5.** a. Montrer que : $\forall n \geqslant 2$, $\sum_{k=1}^{n-1} k p^{k-1} = \frac{(n-1)p^n np^{n-1} + 1}{(1-p)^2}$
 - **b.** En déduire que, pour $n \geqslant 2$, $E(X_n) = \frac{p(1-p^n)}{1-p}$

La fin est en option : un peu plus technique mais pour aller au bout du problème.

- **6.** a. Montrer, en utilisant la question **3.a.**, que : $\forall n \in \mathbb{N}, E\left(X_{n+1}^2\right) = p\left(E\left(X_n^2\right) + 2E\left(X_n\right) + 1\right)$
 - **b.** Pour tout entier naturel n, on pose $u_n = E\left(X_n^2\right) + (2n-1)\frac{p^{n+1}}{1-p}$ Montrer que $u_{n+1} = p u_n + \frac{p(1+p)}{1-p}$
 - **c.** En déduire l'expression de u_n , puis celle de $E\left(X_n^2\right)$ en fonction de p et n
 - **d.** Montrer enfin que : $V(X_n) = \frac{p}{(1-p)^2} (1-(2n+1)p^n(1-p)-p^{2n+1})$