TD 6 - intégrales généralisées

Calculs divers

Exercice 1

Calculer les intégrales suivantes :

1.
$$\int_0^{\frac{1}{2}} \frac{1}{(1-x)^2} \mathrm{d}x$$

$$\mathbf{4.} \ \int_0^x t e^{-t^2} \mathrm{d}t$$

2.
$$\int_0^1 \frac{x}{(1+x)^2} \mathrm{d}x$$

$$5. \int_{1}^{2} \frac{1 + x^3 + x^4}{x^2} \mathrm{d}x$$

3.
$$\int_0^1 \frac{x^2}{(1+x)^3} dx$$

6.
$$\int_0^1 \frac{x^2}{1+x^3} dx$$

Exercice 2

Dans chaque cas, calculer des primitives de la fonction f en précisant l'intervalle de validité.

1.
$$f(x) = \sqrt{2-x}$$

4.
$$f(x) = \frac{1}{a+x}$$
 $(a \in \mathbb{R})$

2.
$$f(x) = x \ln(1 + x^2)$$

5.
$$f(x) = \ln(x)$$

3.
$$f(x) = xe^{-2x+1}$$

6.
$$f(x) = x \ln(x)$$

Exercice 3

Déterminer deux réels
$$a$$
 et b tels que :
$$\forall x \in \mathbb{R} \setminus \{-1, 1\}, \quad \frac{1}{1 - x^2} = \frac{a}{1 - x} + \frac{b}{1 + x}$$

En déduire une primitive de $x \mapsto \frac{1}{1-x^2}$, en précisant les intervalles de validité.

Montrer la convergence et calculer l'intégrale : $\int_{0}^{+\infty} \frac{\mathrm{d}x}{x^2 - 1}$

Exercice 4

Etudier les convergences des intégrales suivantes, et les calculer si possible.

1. $\int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt$

3. $\int_{0}^{+\infty} te^{-2t} dt$

2. Pour $n \ge 2$, $\int_{1}^{+\infty} \frac{\ln(t)}{t^n} dt$

 $4. \int_{-t \ln(t)}^{+\infty} \frac{1}{t \ln(t)} dt$

Exercice 5

Montrer par récurrence que, pour tout entier $n \in \mathbb{N}$, $\int_{1}^{+\infty} t^n e^{-t} dt = n!$

Exercice 6 - changements de variables

1. Calculer $\int_{0}^{1} t \ln(1+t^2) dt$ par le changement de variables $u=1+t^2$

2. Calculer $I_n = \int_0^1 \frac{x^{2n+1}}{1+x^{n+1}} dx$ avec $n \in \mathbb{N}^*$ par le changement de va-

Exercice 7 - convergence d'intégrale

Etudier la convergence des intégrales suivantes (on ne demande pas de les calculer).

1. $\int_{1}^{+\infty} \frac{1}{1+t^2} dt$

3. $\int_{0}^{+\infty} e^{-t^2} d$

2. $\int_{0}^{+\infty} \sqrt{\frac{t}{1+t^4}} dt$

4. $\int_{0}^{+\infty} t e^{-t} \ln(t) dt$

Exercice 8 - lien séries et intégrales de Riemann

Soit $\alpha \in \mathbb{R}_+^*$

1. Montrer que $\forall k \in \mathbb{N}^*, \frac{1}{(k+1)^{\alpha}} \leqslant \int_{t}^{k+1} \frac{1}{t^{\alpha}} \mathrm{d}t \leqslant \frac{1}{k^{\alpha}}$

2. A l'aide des intégrales de Riemann, retrouver les résultats sur la convergence des séries de Riemann

Suites et fonctions définies à l'aide d'une intégrale

Exercice 9

On pose, pour $x \in \mathbb{R}$, $f(x) = \frac{1}{2}e^{-|x|}$

- 1. Justifier que f est une fonction paire.
- 2. Montrer que $\int_{-\infty}^{+\infty} f(x) dx$ est une intégrale convergente, et calculer sa valeur. On pourra calculer séparément $\int_{0}^{+\infty} f$ et $\int_{-\infty}^{0} f$
- **3.** On pose, pour $x \in \mathbb{R}$: $F(x) = \int_{-\infty}^{x} f(t) dt$
 - a. Justifier que F est de classe C^1 sur \mathbb{R} et que F'=f
 - **b.** Montrer que F est strictement croissante. Préciser les limites de F en $+\infty$ et en $-\infty$
 - c. Montrer que : $F(x) = \begin{cases} 1 \frac{1}{2}e^{-x} & \text{si } x \ge 0 \\ \frac{1}{2}e^{x} & \text{si } x < 0 \end{cases}$

Exercice 10

Pour $x \in \mathbb{R}$, on pose $f(x) = \int_{x}^{2x} \frac{1}{1+t^2} dt$

- 1. En utilisant le changement de variables s=-t, montrer que f est impaire.
- **2. a.** Justifier que $t \mapsto \frac{1}{1+t^2}$ admet une primitive sur \mathbb{R} . On note G une primitive, on ne demande pas d'expliciter G(x)
 - **b.** Exprimer f(x) à l'aide de G et de x
 - c. En déduire que f est dérivable sur \mathbb{R} , et calculer f'(x) pour x>0
 - **d.** Déterminer les variations de f sur \mathbb{R}_+
 - e. Montrer que : $\forall x > 0$, $0 \le f(x) \le \frac{x}{1+x^2}$ En déduire les limites de f en $+\infty$ et en $-\infty$

Exercice 11

Pour $n \in \mathbb{N}$, on définit la fonction f_n par :

$$\forall x \in [n, +\infty[, f_n(x)] = \int_n^x e^{\sqrt{t}} dt$$

- 1. Etude de f_n
 - **a.** Montrer que f_n est de classe \mathscr{C}^1 sur $[n, +\infty[$ puis déterminer $f'_n(x)$ pour $x \in [n, +\infty[$ Donner le sens de variation de f_n
 - **b.** En minorant $f_n(x)$, établir que : $\lim_{x \to +\infty} f_n(x) = +\infty$
 - **c.** En déduire que, pour chaque entier naturel n, il existe un unique réel, noté u_n , élément de $[n, +\infty[$ tel que $f_n(u_n) = 1$
- **2.** Etude de $(u_n)_{n\in\mathbb{N}}$
 - **a.** Montrer que $\lim_{n\to+\infty} u_n = +\infty$
 - **b.** Montrer que : $\forall n \in \mathbb{N}, \quad e^{-\sqrt{u_n}} \leqslant u_n n \leqslant e^{-\sqrt{n}}$
 - c. En déduire que $u_n \underset{n \to +\infty}{\sim} n$ et que $\sum_{n \geqslant 0} (u_n n)$ est une série convergente.

Exercice 12 - un peu plus difficile

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_{-\infty}^{+\infty} \frac{1}{(1+x^2)^n} dx$ et $u_n = \sqrt{n}I_n$

On admet que $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$

2

- 1. Pour tout $n \in \mathbb{N}^*$, montrer que I_n est convergente. Etablir une relation de récurrence entre I_n et I_{n+1}
- **2.** Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est monotone et étudier sa convergence.
- **3.** Calculer I_n , pour tout $n \ge 1$ (on admet que $I_1 = \pi$)
- **4. a.** Montrer que, pour tout réel $x : \ln(1+x^2) \le x^2$ En déduire que pour tout $n \ge 1 : I_n \ge \int_{-\infty}^{+\infty} e^{-nx^2} dx$
 - **b.** Montrer que, pour tout $n \in \mathbb{N}^*$, $\int_{-\infty}^{+\infty} e^{-nx^2} dx = \frac{\sqrt{\pi}}{\sqrt{n}}$
 - **c.** En déduire une minoration de la suite $(u_n)_{n\in\mathbb{N}^*}$ et conclure que la suite $(u_n)_{n\in\mathbb{N}^*}$ ne tend pas vers 0 lorsque n tend vers $+\infty$
- 5. Montrer qu'il existe un réel α tel que $\binom{2n}{n} \sim \frac{\alpha 4^n}{\sqrt{n}}$