Corrigé

Total sur 38 points

Exercice 1 - (Type : Ecricome)

17 points

Lorsque A et B sont deux événements d'un même espace probabilisé, on désignera par $P_B(A)$ la probabilité conditionnelle de A sachant B, où B est un événement de probabilité non nulle : $P_B(A) = P(A/B)$

Dans cet exercice, N désigne un entier naturel supérieur ou égal à 2

Un joueur lance une pièce équilibrée indéfiniment. On note X_N la variable aléatoire réelle discrète égale au nombre de fois où , au cours des N premiers lancers, deux résultats successifs ont été différents (on peut appeler X_N le « nombre de changements » au cours des N premiers lancers).

Par exemple, si les 9 premiers lancers ont donné successivement :

Pile , Pile , Face , Pile , Face , Face , Pile , Pile

alors la variable X_9 aura pris la valeur 4 (quatre changements, aux $3^{\text{ème}}$, $4^{\text{ème}}$, $5^{\text{ème}}$ et $8^{\text{ème}}$ lancers).

1. Justifier que $X_N(\Omega) = \{0, \cdots, N-1\}$

1 point

On peut le justifier sommairement en disant que les cas extrêmes (avec N lancers) :

- on a réalisé Pile à chaque lancer, donc il n'y a eu aucun changement, donc dans ce cas $X_N = 0$
- on a commencé par un Pile, puis chacun des N-1 lancers restants est différent du précédent, donc $X_N=N-1$

entre les deux $(k \in [0, N-2])$, tous les cas intermédaires sont possibles, on commence par Pile, puis on obtient k changements lors des k lancers suivants, puis plus aucun changement.

On considère que la justification précédente est suffisante, mais pour le démontrer rigoureusement, il faut faire une récurrence,

pour $N \in \mathbb{N}, N \geqslant 2$, on pose $P(N) : X_N(\Omega) = [0, N-1]$

<u>Initialisation</u>: P(2) est vraie $\Leftrightarrow X_2 = \{0, 1\}$

ce qui est vrai car en deux lancers on ne peut obtenir que aucun ou un seul changement.

<u>Hérédité</u>: pour $N \in \mathbb{N}, N \geq 2$, on suppose que P(N) est vraie

alors par hypothèse $X_N(\Omega) = [0, N-1]$ donc en effectuant un lancer de plus, on peut obtenir un changement supplémentaire ou aucun changement donc $X_{N+1}(\Omega) \subset [0, N]$

réciproquement, on montre l'autre inclusion (i.e. que toutes ces valeurs sont possibles pour X_{N+1}), pour $k \in [0, N]$, alors

dans le cas où $k = 0, X_{N+1} = 0$ est possible comme vu plus haute (on obtient le même résultat au cours des N + 1 lancers)

dans le cas où k > 0, par hypothèse, $k - 1 \in [0, N - 1]$ donc par hypothèse de récurrence, $k - 1 \in X_N(\Omega)$ donc $X_N = k - 1$ est possible et donc $X_{N+1} = k$ est possible (on obtient au lancer N + 1 un résultat différent de celui obtenu au $N^{\text{ème}}$, dans un des cas où $X_N = k - 1$) finalement $[0, N] \subset X_{N+1}(\Omega)$, l'autre inclusion est donc démontrée, et donc $X_{N+1}(\Omega) = [0, N]$ i.e. P(N+1) est vraie d'où l'hérédité

donc par théorème de récurrence, $\forall N \in \mathbb{N}, N \geqslant 2, P(N)$ est vraie

2. Déterminer la loi de X_2 ainsi que son espérance. Déterminer la loi de X_3

2,5 points

D'après la question 1., $X_2(\Omega) = \{0,1\}$ et il n'y a que quatre possibilités pour 2 lancers :

$$P(X_2 = 0) = \frac{2}{4} = \frac{1}{2}$$
 (on a obtenu, Pile, Pile ou Face, Face)

$$P(X_2 = 1) = \frac{\frac{7}{2}}{4} = \frac{1}{2}$$
 (on a obtenu, Pile, Face ou Face, Pile)

finalement,
$$X_2 \hookrightarrow \mathcal{B}\left(\frac{1}{2}\right)$$
 (ou $X_2 \hookrightarrow \mathcal{U}\left(\llbracket 0, 1 \rrbracket\right)$)

donc par propriété de la loi de Bernoulli, $E(X_2) = \frac{1}{2}$

d'après la question 1. $X_3(\Omega) = \{0, 1, 2\}$

et $((X_2=0),(X_2=1))$ forme un système complet d'événements donc pour $i\in\{0,1,2\}, P(X_3=i)=P(X_2=0)P_{[X_2=0]}P(X_3=i)+P(X_2=0)P_{[X_2=0]}(X_3=i)$

or $P_{[X_2=0]}P(X_3=0) = P_{[X_2=0]}P(X_3=1) = \frac{1}{2}$ (ce sont les cas où on a d'abord obtenu 2 lancers identiques, puis il y a une chance sur deux que le troisième soit identique ou différent, sachant le résultat des deux premiers)

de même $P_{[X_2=1]}P(X_3=1) = P_{[X_2=1]}P(X_3=2) = \frac{1}{2}$

et $P_{[X_2=0]}P(X_3=2)=P_{[X_2=1]}P(X_3=0)=0$ (il n'est pas possible d'obtenir 2 changements en trois lancers si on n'en a obtenu que 2 lors des deux premiers lancers, et d'obtenir aucun changement en trois lancers s'il y en a déjà eu un au cours des deux premiers)

changement en trois lancers s'il y en a déjà eu un au cours des deux premiers) donc
$$P(X_3 = 0) = \frac{1}{2} \times \frac{1}{2} + 0 = \frac{1}{4}$$
 et $P(X_3 = 1) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$

et $P(X_3 = 2) = 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ (on aurait pu déduire la troisième valeur des deux premières, $= 1 - \dots$)

finalement on remarque que $X_3 \hookrightarrow \mathcal{B}\left(2,\frac{1}{2}\right)$ mais il n'était pas forcément évident de le deviner (on peut comprendre qu'il y a une chance sur deux que deux lancers consécutifs donnent un changement et il y a deux couples de lancers consécutifs).

3. Montrer que
$$P(X_N = 0) = \left(\frac{1}{2}\right)^{N-1}$$
 et $P(X_N = 1) = 2(N-1)\left(\frac{1}{2}\right)^N$ 2 points

On peut le montrer par récurrence ou écrire $(X_N = 0 \text{ signifie que des Pile ou que des Face})$:

$$(X_N = 0) = \left(\bigcap_{k=1}^N P\right) \bigcup \left(\bigcap_{k=1}^N F\right)$$

 $\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$

incompatibles
$$P(X_N = 0) = \prod_{k=1}^{N} P(P) + \prod_{k=1}^{N} P(F) = \left(\frac{1}{2}\right)^N + \left(\frac{1}{2}\right)^N = 2 \times \left(\frac{1}{2}\right)^N = \left(\frac{1}{2}\right)^{N-1}$$

Pour le cas $P(X_N = 1)$, comme il n'y a qu'un seul changement, cela correspond à une série de Pile puis une série de Face ou vice versa. La question revient à trouver la position du changement et il y a N-1 possibilités à chaque fois (du lancer 2 au lancer N).

Pour le montrer rigoureusement, on peut faire une récurrence,

pour
$$N \in \mathbb{N}, N \ge 2$$
, on pose $P(N) : P(X_N = 1) = 2(N-1)\left(\frac{1}{2}\right)^N$

<u>Initialisation</u>: P(2) est vraie $\Leftrightarrow P(X_2 = 1) = 2(2-1) \times \left(\frac{1}{2}\right)^{\frac{1}{2}} \Leftrightarrow P(X_2 = 1) = \frac{1}{2}$

ce qui est vrai d'après $\mathbf{2}$, donc P(2) est vraie

<u>Hérédité</u>: pour $N \in \mathbb{N}, N \geqslant 2$, on suppose que P(N) est vraie

alors comme $([X_N = k])_{k \in [0, N-1]}$ forme un système complet d'événements, d'après la formule

des probabilités totales,
$$P(X_{N+1} = 1) = \sum_{k=0}^{N-1} P(X_N = k) P_{[X_N = k]}(X_{N+1} = 1)$$

or si k > 1, $P_{[X_N=k]}(X_{N+1}=1) = 0$ (si il y a déjà eu strictement plus d'un changement au cours des N premiers lancers, il n'est pas possible d'en n'obtenir qu'un seul au cours des N+1 premiers lancers)

donc $P(X_{N+1} = 1) = P(X_N = 0)P_{X_N=0}(X_{N+1} = 1) + P(X_N = 1)P_{X_N=1}(X_{N+1} = 1)$ or $P(X_N = 0) = \left(\frac{1}{2}\right)^{N-1}$ comme vu plus haut et $P_{X_N=0}(X_{N+1} = 1) = P_{X_N=1}(X_{N+1} = 1) = \frac{1}{2}$ (une chance sur deux qu'il y ait un changement ou non entre les instants N et N+1); enfin par hypothèse de récurrence $P(X_N = 1) = 2(N-1)\left(\frac{1}{2}\right)^N$ donc $P(X_{N+1} = 1) = \frac{1}{2}\left(\frac{1}{2}\right)^{N-1} + \frac{1}{2} \times 2(N-1)\left(\frac{1}{2}\right)^N = \left(\frac{1}{2}\right)^N + 2(N-1)\left(\frac{1}{2}\right)^{N+1}$ donc $P(X_{N+1} = 1) = 2\left(\frac{1}{2}\right)^{N+1} + 2(N-1)\left(\frac{1}{2}\right)^{N+1} = 2N\left(\frac{1}{2}\right)^{N+1}$ i.e. P(N+1) est vraie d'où l'hérédité donc par théorème de récurrence, $\forall N \in \mathbb{N}, N \geqslant 2, P(N)$ est vraie

4. a. Justifier que pour tout entier k de $\{0, ..., N-1\}$: $P_{X_N=k}(X_{N+1}=k)=\frac{1}{2}$ 0.5 point (C'est à dire $P(X_{N+1}=k/X_N=k)=\frac{1}{2}$)

Comme vu à plusieurs reprises, il y a une chance sur deux qu'un nouveau lancer apporte un changement supplémentaire ou n'apporte aucun changement (c'est ce dernier cas que l'on cherche ici), donc $P_{X_N=k}(X_{N+1}=k)=\frac{1}{2}$

b. En déduire que pour tout entier k de $\{0,...,N-1\}$: $P(X_{N+1}-X_N=0\cap X_N=k)=\frac{1}{2}P(X_N=k)$ 1 point

Par définition des probabilités conditionnelles,

 $P(X_{N+1} - X_N = 0 \cap X_N = k) = P(X_n = k)P_{[X_N = k]}(X_{N+1} - X_N = 0)$ or $X_{N+1} - X_N = 0$ signifie qu'il n'y a pas eu de changement entre le lancer N + 1 ce qui arrive dans un cas sur deux et indépendamment du nombre de changements obtenus précédemment donc $P_{[X_N = k]}(X_{N+1} - X_N = 0) = \frac{1}{2}$

donc $P(X_{N+1} - X_N = 0 \cap X_N = k) = P(X_n = k) \times \frac{1}{2}$

c. En sommant cette relation de k=0 à N-1, montrer que $P(X_{N+1}-X_N=0)=\frac{1}{2}$

Comme vu plus haut, $([X_N = k])_{k \in [0, N-1]}$ forme un système complet d'événements 2 pts donc d'après la formule des probabilités totales :

$$P(X_{N+1} - X_N = 0) = \sum_{k=0}^{N-1} P(X_n = k) P(X_{N+1} - X_N = 0 \cap X_N = k)$$

$$P(X_{N+1} - X_N = 0) = \sum_{k=0}^{N-1} P(X_n = k) \times \frac{1}{2} \text{ d'après la question précédente}$$

$$P(X_{N+1} - X_N = 0) = \frac{1}{2} \sum_{k=0}^{N-1} P(X_n = k) = \frac{1}{2} \text{ car } \sum_{k=0}^{N-1} P(X_n = k) = 1 \text{ puisque } ([X_N = k])_{k \in [[0, N-1]]} \text{ est un système complet d'événements}$$

d. Montrer que la variable $X_{N+1} - X_N$ suit une loi de Bernoulli de paramètre $\frac{1}{2}$ 2 points En déduire la relation $E(X_{N+1}) = \frac{1}{2} + E(X_N)$, puis donner $E(X_N)$ en fonction de NLes seules valeurs possibles pour $X_{N+1} - X_N$ sont 0 ou 1 (aucun ou un changement supplémentaire)

de plus comme nous venons de le voir, $P(X_{N+1} - X_N) = \frac{1}{2}$ donc $X_{N+1} - X_N \hookrightarrow \mathcal{B}\left(\frac{1}{2}\right)$

donc comme plus haut $E(X_{N+1} - X_N) = \frac{1}{2}$, donc par linéarité $E(X_{N+1}) - E(X_N) = \frac{1}{2}$ et donc $E(X_{N+1}) = \frac{1}{2} + E(X_N)$

donc $(E(X_N))_{N\geq 2}$ est une suite arithmétique (on peut poser $u_n=E(X_N)$ pour s'en convaincre)

donc
$$\forall n \ge 2, E(X_N) = (n-2) \times \frac{1}{2} + E(X_2) = (n-2) \times \frac{1}{2} + \frac{1}{2} = (n-1) \times \frac{1}{2} = \frac{n-1}{2}$$

5. a. Montrer grâce aux résultats 4.b. et 4.c. que les variables $X_{N+1}-X_N$ et X_N sont indépendantes.

Soit $k \in [2, N-1]$, alors d'après la question **4.b.**,

2 points

$$P(X_{N+1} - X_N = 0 \cap X_N = k) = \frac{1}{2}P(X_N = k)$$

et comme $(X_{N+1}-X_N)(\Omega)=\{0,1\}$ d'après la (petite) formule des probabilités totales $P(X_N=k)=P(X_{N+1}-X_N=0\cap X_N=k)+P(X_{N+1}-X_N=1\cap X_N=k)$ on en déduit $P(X_{N+1}-X_N=1\cap X_N=k)=P(X_N=k)-\frac{1}{2}P(X_N=k)=\frac{1}{2}P(X_N=k)$

on en déduit
$$P(X_{N+1} - X_N = 1) \cap X_N = k) = P(X_N = k) - \frac{1}{2}P(X_N = k) = \frac{1}{2}P(X_N = k)$$

finalement : d'après la question **4.d** $P(X_{N+1} - X_N = 0) = P(X_{N+1} - X_N = 1) = \frac{1}{2}$ et

$$P(X_{N+1} - X_N = 0 \cap X_N = k) = \frac{1}{2}P(X_N = k)$$
 et

$$P(X_{N+1} - X_N = 1 \cap X_N = k) = \frac{1}{2}P(X_N = k)$$

i.e.
$$P(X_{N+1} - X_N = 0 \cap X_N = k) = P(X_{N+1} - X_N = 0)P(X_N = k)$$

et
$$P(X_{N+1} - X_N = 1 \cap X_N = k) = P(X_{N+1} - X_N = 1)P(X_N = k)$$

ce qui constitue tous les couples de valeurs possibles pour $X_{N+1} - X_N$ et X_N donc par définition $X_{N+1} - X_N$ et X_N sont indépendantes.

b. En déduire par récurrence sur N que X_N suit une loi binomiale $B\left(N-1,\frac{1}{2}\right)$ En déduire la variance $V(X_N)$

On s'exécute, pour $N \in \mathbb{N}, N \geqslant 2$, on pose $P(N): X_N \hookrightarrow B\left(N-1, \frac{1}{2}\right)$

$$\underline{\text{Initialisation}}: P(2) \text{ est vraie} \Leftrightarrow X_2 \hookrightarrow \mathscr{B}\left(1, \frac{1}{2}\right) \Leftrightarrow X_2 \hookrightarrow \mathscr{B}\left(\frac{1}{2}\right)$$

ce qui est vrai d'après la question 2, donc P(2) est vraie

 $\underline{\mathsf{H\acute{e}r\acute{e}dit\acute{e}}}: \mathsf{pour}\ N \in \mathbb{N}, N \geqslant 2,$ on suppose que P(N) est vraie

alors d'après **1.** $X_{N+1}(\Omega) = [0, N]$ et par hypothèse $X_N \hookrightarrow B\left(N-1, \frac{1}{2}\right)$

donc
$$\forall k \in \llbracket 0, N-1 \rrbracket, P(X_N=k) = \binom{N-1}{k} \left(\frac{1}{2}\right)^{N-1}$$

Nota bene : ceci correspond à la loi binomiale car $p=q=\frac{1}{2}$ ici et donc $p^kq^{N-1-k}=p^{N-1}$ soit $k \in [0, N]$, alors d'après la formule des probabilités totales (toujours le système complet d'événements $([X_N = i])_{i \in \llbracket 0, N-1 \rrbracket})$

$$P(X_{N+1} = k) = \sum_{i=0}^{N-1} P(X_N = i) P_{[X_N = i]}(X_{N+1} = k)$$

 $\underline{1^{\text{er}} \cos} : k = 0 \text{ alors } P(X_{N+1} = 0) = \left(\frac{1}{2}\right)^N \text{ d'après } 3.$

 $2^{\text{ème}} \text{ cas} : k > 0$

alors puisque $\forall i \neq k-1$ et $i \neq k, P_{[X_N=i]}(X_{N+1}=k)=0$ (il ne peut y avoir que i ou i+1 changements en N+1 lancers s'il y en a eu i en N lancers, donc

$$P(X_{N+1} = k) = P(X_N = k - 1)P_{[X_N = k-1]}(X_{N+1} = k) + P(X_N = k)P_{[X_N = k]}(X_{N+1} = k)$$

$$= {N-1 \choose k-1} \left(\frac{1}{2}\right)^{N-1} \times \frac{1}{2} + {N-1 \choose k} \left(\frac{1}{2}\right)^{N-1} \times \frac{1}{2} \text{ par hypothèse de}$$

récurrence et car $P_{X_N=k-1}(X_{N+1}=k)=P_{X_N=k}(X_{N+1}=k)=\frac{1}{2}$ (une chance sur deux dans chacun de ces deux cas)

donc
$$P(X_{N+1} = k) = {N \choose k-1} + {N-1 \choose k} \left(\frac{1}{2}\right)^N = {N \choose k} \left(\frac{1}{2}\right)^N$$
 d'après la formule du binôme de Pascal

finalement
$$X_{N+1}(\Omega) = [0, N]$$
 et $\forall k \in [0, N], P(X_{N+1} = k) = {N \choose k} \left(\frac{1}{2}\right)^N$

donc
$$X_{N-1} \hookrightarrow B\left(N, \frac{1}{2}\right)$$
 i.e. $P(N+1)$ est vraie d'où l'hérédité

donc par théorème de récurrence, $\forall N \in \mathbb{N}, N \geqslant 2, P(N)$ est vraie i.e. $X_N \hookrightarrow B\left(N-1, \frac{1}{2}\right)$

et donc par propriété
$$V(X_N) = (N-1) \times \frac{1}{2} \times \frac{1}{2} = \frac{N-1}{4}$$

Nota bene : on retrouve également le résultat de la question 4.d. pour l'espérance.

Remarque : l'idée de l'énoncé est sans dout plutôt d'utiliser dans l'hérédité,

$$(X_{N+1} = k) = ([X_N = k] \cap [X_{N+1} - X_N = 0]) \bigcup ([X_N = k - 1] \cap [X_{N+1} - X_N = 1])$$
 puis par indépendance et incompatibilité, $P(X_{N+1} = k) = P(X_N = k)P(X_{N+1} - X_N = 0) + P(X_N = k - 1)P(X_{N+1} - X_N = 1)$

0) + $P(X_N = k - 1)P(X_{N+1} - X_N = 1)$ donc $P(X_{N+1} = k) = P(X_N = k)\frac{1}{2} + P(X_N = k - 1)\frac{1}{2}$ puis avec l'hypothèse de récurrence, on retrouve la formule de Pascal

Exercice 2 21 points

On considère la matrice carrée d'ordre trois suivante : $A=\left(\begin{array}{ccc} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{array}\right)$

Montrer, sans calcul, que A est diagonalisable.
 A est symétrique donc diagonalisable.

2. Calculer $4A^3 - 3A$. En déduire un polynôme P annulateur de A 2,25 points

$$A^{2} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$\operatorname{donc} A^{3} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix}$$

donc
$$4A^3 - 3A = \frac{1}{2} \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 & 3 & 3 \\ 3 & 0 & 3 \\ 3 & 3 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = I_3$$

donc $4A^3 - 3A - I_3 = 0$ donc $4x^3 - 3x - 1$ est un polynôme annulateur de A

3. Calculer P(1). En déduire une racine de P puis, les autres racines de P 2 points P(1) = 4 - 3 - 1 = 0 donc 1 est une racine de P et donc P peut s'écrire P(x) = (x - 1)Q(x) où Q est un polynôme de degré 2 donc $\exists (a,b,c) \in \mathbb{R}^3, P(x) = ax^2 + bx + c$ alors $(x-1)Q(x) = ax^3 + bx^2 + cx - ax^2 - bx - c = ax^3 + (b-a)x^2 + (c-b)x - c$

alors $(x - 1)Q(x) = ax^3 + bx^2 + cx - ax^2 - bx - c = ax^3 + (b - a)x^2 + (c - b)x - c$ donc par identification a = 4, -c = -1 et b - a = 0 donc b = a = 4 et c = 1donc $Q(x) = 4x^2 + 4x + 1 = (2x + 1)^2$

donc $P(x) = (x-1)(2x+1)^2$ et donc les racines de P sont $-\frac{1}{2}$ et 1

4. Déterminer une matrice diagonale D et une matrice inversible et symétrique P, de première ligne $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ et de deuxième ligne $\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$, telles que $A = PDP^{-1}$ Calculer P^{-1}

Il faut donc diagonaliser A. D'après la question précédente, on sait que $Sp\{A\} \subset \left\{-\frac{1}{2}, 1\right\}$, on va donc tester ces deux valeurs propres potentielles et déterminer le cas échéant les sous-espaces propres associés

$$AX = X \Leftrightarrow (A - I_3)X = 0_{3,1} \Leftrightarrow (2A - 2I_3)X = 0_{3,1}$$

$$\Leftrightarrow \begin{pmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 0 \end{pmatrix} L_1 \leftrightarrow L_3$$

$$\Leftrightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 3 & -3 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix} L_2 \leftarrow L_2 + 2L_1 \Leftrightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} L_2 \leftarrow I/3L_2$$

$$\Leftrightarrow \begin{cases} x + y - 2z & = 0 \\ y - z & = 0 \end{cases} \Leftrightarrow \begin{cases} x & = z \\ y & = z \end{cases}$$

donc 1 est valeur propre (il existe des solutions non nulles à AX = X)

et
$$E_1(A) = \left\{ \begin{pmatrix} z \\ z \\ z \end{pmatrix}, z \in \mathbb{R} \right\} = \left\{ z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, z \in \mathbb{R} \right\} = \text{Vect} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

de même $AX=-\frac{1}{2}X\Leftrightarrow \left(A+\frac{1}{2}I_3\right)X=0_{3,1}\Leftrightarrow (2A+I_3)X=0_{3,1}$

$$\Leftrightarrow \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{array}\right) \Leftrightarrow \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \begin{array}{c} L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 - L_1 \end{array}$$

 $\Leftrightarrow \left\{ \begin{array}{lll} x+y+z & = & 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} x & = & -y-z \end{array} \right. \ \text{donc, de même, } -\frac{1}{2} \ \text{est valeur propre} \right.$

$$\text{et } E_{-\frac{1}{2}}(A) = \left\{ \begin{pmatrix} -y - z \\ y \\ z \end{pmatrix}, (y, z) \in \mathbb{R}^2 \right\} = \left\{ \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} + \begin{pmatrix} -z \\ 0 \\ z \end{pmatrix}, (y, z) \in \mathbb{R}^2 \right\}$$

$$E_{-\frac{1}{2}}(A) = \left\{ y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, (y, z) \in \mathbb{R}^2 \right\} = \text{Vect} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \text{Vect} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

car le Vect reste identique en changeant des vecteurs générateurs par des vecteurs proportionnels non nuls. On fait ceci pour se conformer à la demande de l'énoncé sur la matrice P

on pose donc
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
 et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}$ alors $AP = \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$ et $PD = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 1 & \frac{1}{2} & 0 \\ 1 & 0 & \frac{1}{2} \end{pmatrix}$

donc AP = PD et de l'inversibilité de P, on déduira $A = PDP^{-1}$ comme on nous demande P^{-1} ici, c'est ce qui justifiera l'inversibilité (sinon cf. remarque)

comme on nous demande
$$P$$
 - ici, c est ce qui justifiera l'inversibilite (sinon cf. remarque)
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -2 & -1 & -1 & 1 & 0 \\ 0 & -1 & -2 & -1 & 0 & 1 \\ 0 & -1 & -2 & -1 & 0 & 1 \\ 0 & -2 & -1 & -1 & 1 & 0 \end{pmatrix} \underbrace{L_2 \leftrightarrow L_3} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 & 1 \\ 0 & 0 & 3 & 1 & 1 & -2 \end{pmatrix} \underbrace{L_3 \leftrightarrow L_3 - 2L_2}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 & 1 \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1$$

Remarque : si P^{-1} n'est pas demandée, l'argumentaire ci-dessous suffit à justifier que P est inversible et donc à passer de AP = PD à $A = PDP^{-1}$

alors
$$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 est une famille libre (car composée d'un vecteur non nul), ainsi que $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ (car composée de deux vecteurs non proportionnels)

donc
$$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ est une famille libre car il s'agit d'une concaténation de fa-

milles libres de sous-espaces propres distincts, c'est donc une base de $\mathcal{M}_{3,1}$ car elle est composée de 3 éléments, ce qui est égal à la dimension de l'espace. donc la matrice P composée de ces vecteurs est inversible

5. Déterminer, pour tout $n \in \mathbb{N}^*$, la matrice A^n par ses éléments.

3 points

Au préalable, on montre par récurrence $A^n=PD^nP^{-1}$, pour $n\in\mathbb{N}$, on définit l'assertion $P(n):A^n=PD^nP^{-1}$

 $\frac{\text{Initialisation}}{\text{ce qui est le cas car }PI_3P^{-1}=PP^{-1}=I_3\text{ donc }P(0)\text{ est vraie}}\Leftrightarrow I_3=PI_3P^{-1}$

 $\begin{array}{l} \underline{\text{H\'er\'edit\'e}}: \text{soit } n \in \mathbb{N}, \text{ supposons } P(n) \text{ vraie donc par hypoth\`ese } A^n = PD^nP^{-1} \\ \text{on commence par inverser la formule qui d\'efinit } D: D = P^{-1}MP \Rightarrow PD = PP^{-1}MP \Rightarrow \\ PD = I_3MP \Rightarrow PD = MP \Rightarrow PDP^{-1} = MPP^{-1} \Rightarrow PDP^{-1} = MI_3 = M \\ \text{donc } A^{n+1} = A^n \times A = PD^nP^{-1}PDP^{-1} = PD^nI_3DP^{-1} = PD^nDP^{-1} = PD^{n+1}P^{-1} \text{ i.e. } P(n+1) \\ \text{1) est vraie donc par th\'eor\`eme de r\'ecurrence,} \quad \forall n \in \mathbb{N}, P(n) \text{ est vraie, i.e. } A^n = PD^nP^{-1} \\ \end{array}$

reste à expliciter A^n , en calculant, avec la propriété sur les matrices diagonales qui nous donne D^n , donc pour $n \in \mathbb{N}^*$ (et même dans \mathbb{N}) :

$$A^{n} = PD^{n}P^{-1} = \frac{1}{3}P\begin{pmatrix} 1 & 0 & 0 \\ 0 & \left(\frac{-1}{2}\right)^{n} & 0 \\ 0 & 0 & \left(\frac{-1}{2}\right)^{n} \end{pmatrix}\begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

$$= \frac{1}{3}\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}\begin{pmatrix} 1 & 1 & 1 \\ \left(\frac{-1}{2}\right)^{n} & -2\left(\frac{-1}{2}\right)^{n} & \left(\frac{-1}{2}\right)^{n} \\ \left(\frac{-1}{2}\right)^{n} & \left(\frac{-1}{2}\right)^{n} & -2\left(\frac{-1}{2}\right)^{n} \end{pmatrix}$$

$$= \frac{1}{3}\begin{pmatrix} 1 + 2\left(\frac{-1}{2}\right)^{n} & 1 - \left(\frac{-1}{2}\right)^{n} & 1 - \left(\frac{-1}{2}\right)^{n} \\ 1 - \left(\frac{-1}{2}\right)^{n} & 1 + 2\left(\frac{-1}{2}\right)^{n} & 1 - \left(\frac{-1}{2}\right)^{n} \\ 1 - \left(\frac{-1}{2}\right)^{n} & 1 - \left(\frac{-1}{2}\right)^{n} & 1 + 2\left(\frac{-1}{2}\right)^{n} \end{pmatrix} \text{ (bien valable pour } n = 0)$$

6. Soient u_0, v_0, w_0 trois nombres réels positifs ou nuls tels que $u_0 + v_0 + w_0 = 1$

On note

$$X_0 = \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}, \quad \text{et} \quad \forall n \in \mathbb{N}^*, \quad X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$

la matrice colonne définie par la relation de récurrence : $X_n = AX_{n-1}$

a. Montrer, pour tout $n \in \mathbb{N} : X_n = A^n X_0$

1 point

On procède par récurrence, pour $n \in \mathbb{N}$, on définit $P(n): X_n = A^n X_0$

 $\underline{\text{Initialisation}}: P(0) \text{ est vraie} \Leftrightarrow X_0 = A^0 X_0 \Leftrightarrow X_0 = X_0$ ce qui est vrai donc P(0) est vraie

<u>Hérédité</u>: soit $n \in \mathbb{N}$, on suppose que P(n) est vraie

alors par définition, $X_{n+1} = AX_n$ (car $\forall n \in \mathbb{N}^*, X_n = AX_{n-1} \Leftrightarrow \forall n \in \mathbb{N}, X_{n+1} = AX_n$)

et par hypothèse de récurrence $X_n = A^N X_0$ donc $X_{n+1} = AA^n X_0 = A^{n+1} X_0$, i.e. P(n+1) est vraie, d'où l'hérédité

donc par théorème de récurrence, $\forall n \in \mathbb{N}, P(n)$ est vraie, i.e. $X_n = A^n X_0$

b. En déduire, pour tout $n \in \mathbb{N}$, $\begin{cases} u_n = \frac{1}{3} + \left(u_0 - \frac{1}{3}\right) \left(-\frac{1}{2}\right)^n \\ v_n = \frac{1}{3} + \left(v_0 - \frac{1}{3}\right) \left(-\frac{1}{2}\right)^n \\ w_n = \frac{1}{3} + \left(w_0 - \frac{1}{3}\right) \left(-\frac{1}{2}\right)^n \end{cases}$ 2 points

$$\begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 + 2\left(\frac{-1}{2}\right)^n & 1 - \left(\frac{-1}{2}\right)^n & 1 - \left(\frac{-1}{2}\right)^n \\ 1 - \left(\frac{-1}{2}\right)^n & 1 + 2\left(\frac{-1}{2}\right)^n & 1 - \left(\frac{-1}{2}\right)^n \\ 1 - \left(\frac{-1}{2}\right)^n & 1 - \left(\frac{-1}{2}\right)^n & 1 + 2\left(\frac{-1}{2}\right)^n \end{pmatrix} \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} \left(1 - \left(\frac{-1}{2}\right)^n\right) (u_0 + v_0 + w_0) + 3\left(\frac{-1}{2}\right)^n u_0 \\ \left(1 - \left(\frac{-1}{2}\right)^n\right) (u_0 + v_0 + w_0) + 3\left(\frac{-1}{2}\right)^n v_0 \\ \left(1 - \left(\frac{-1}{2}\right)^n\right) (u_0 + v_0 + w_0) + 3\left(\frac{-1}{2}\right)^n w_0 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 1 - \left(\frac{-1}{2}\right)^n + 3\left(\frac{-1}{2}\right)^n u_0 \\ 1 - \left(\frac{-1}{2}\right)^n + 3\left(\frac{-1}{2}\right)^n v_0 \end{pmatrix} \text{ et donc } \begin{cases} u_n = \frac{1}{3} + \left(u_0 - \frac{1}{3}\right)\left(-\frac{1}{2}\right)^n \\ v_n = \frac{1}{3} + \left(v_0 - \frac{1}{3}\right)\left(-\frac{1}{2}\right)^n \\ w_n = \frac{1}{3} + \left(w_0 - \frac{1}{3}\right)\left(-\frac{1}{2}\right)^n \end{cases}$$

c. Déterminer les limites respectives u, v, w de u_n, v_n, w_n lorsque le nombre entier n tend vers l'infini. 0.5 point

Comme $\left|-\frac{1}{2}\right| < 1$ alors $\left(-\frac{1}{2}\right)^n \to 0$ et u_n, v_n , et w_n tendent vers $\frac{1}{3}$ quand $n \to +\infty$

donc
$$u = v = w = \frac{1}{3}$$

On note, pour tout $n \in \mathbb{N}$, $d_n = \sqrt{(u_n - u)^2 + (v_n - v)^2 + (w_n - w)^2}$

d. Montrer, pour tout $n \in \mathbb{N}$: $d_n \leqslant \frac{1}{2n-1}$

2 points

On a
$$d_n^2 = \left[\left(u_0 - \frac{1}{3} \right) \left(-\frac{1}{2} \right)^n \right]^2 + \left[\left(v_0 - \frac{1}{3} \right) \left(-\frac{1}{2} \right)^n \right]^2 + \left[\left(v_0 - \frac{1}{3} \right) \left(-\frac{1}{2} \right)^n \right]^2$$

$$= \left(-\frac{1}{2} \right)^{2n} \left[\left(u_0 - \frac{1}{3} \right)^2 + \left(v_0 - \frac{1}{3} \right)^2 + \left(v_0 - \frac{1}{3} \right)^2 \right]$$

et comme u_0 , v_0 , w_0 sont trois nombres réels positifs ou nuls tels que $u_0 + v_0 + w_0 = 1$ alors $0 \le u_0 = 1 - (v_0 + w_0) \le 1$ et $\frac{-2}{3} \le \frac{-1}{3} \le u_0 - \frac{1}{3} \le \frac{2}{3}$

donc
$$\left(u_0 - \frac{1}{3}\right)^2 \leqslant \frac{4}{9}$$
 et de même pour $\left(v_0 - \frac{1}{3}\right)^2$ et $\left(v_0 - \frac{1}{3}\right)^2$ donc $\left(u_0 - \frac{1}{3}\right)^2 + \left(v_0 - \frac{1}{3}\right)^2 + \left(v_0 - \frac{1}{3}\right)^2 \leqslant \frac{4}{3} \leqslant 4$

finalement $d_n^2 \leqslant \left(\frac{1}{2}\right)^{2n} 4$ et donc $\sqrt{d_n^2} \leqslant \sqrt{\left(\frac{1}{2}\right)^{2n}} 4$ par croissance de $x \mapsto \sqrt{x}$

or
$$\sqrt{d_n^2} = |d_n| = d_n \text{ car } d_n \ge 0 \text{ et } \sqrt{\left(\frac{1}{2}\right)^{2n}} 4 = \sqrt{\left(\frac{1}{2}\right)^{2n}} \sqrt{4} = \left(\frac{1}{2}\right)^n \times 2 = \left(\frac{1}{2}\right)^{n-1}$$

donc pour tout $n \in \mathbb{N} : d_n \leqslant \frac{1}{2^{n-1}}$

e. Déterminer un entier naturel n tel que : $d_n \leq 10^{-2}$

1 point

Comme $2^7 = 128$ alors pour n = 8 on a $2^{n-1} = 128$ et $d_8 \le 10^{-2}$ pour n = 8 on a bien $d_8 \leqslant 10^{-2}$ donc