Dans tout le sujet on considère un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, toutes les variables aléatoires qui interviennent dans la suite sont définies sur cet espace.

Soit n un entier supérieur ou égal à 3 et p un réel appartenant à [0,1[.

Pour générer des graphes non orientés de manière aléatoire, on se donne :

- S = [0, n-1] les sommets du graphe;
- pour toute paire de sommets $\{u, v\}$ avec u < v, $T_{u,v}$ une variable de Bernoulli de paramètre p. Les variables $T_{u,v}$, pour $\{u, v\}$ décrivant les paires de sommets avec u < v, sont supposées indépendantes;
- les arètes d'un graphe G ainsi généré sont les paires $\{u,v\}$ telles que $T_{u,v}=1$ si u < v ou $T_{v,u}=1$ si v < u.

Dans tout le problème, par convention, une somme portant sur un ensemble d'indices vide vaut 0, un produit vaut 1, une intersection vaut Ω , une réunion vaut \emptyset .

Partie 1 – Nombre aléatoire de triangles

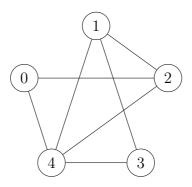
On note \mathcal{T} l'ensemble des parties $\{u, v, w\}$ à trois éléments de l'ensemble des sommets, r le nombre de ses éléments et on pose

$$\mathcal{T} = \{t_1, \ldots, t_r\}$$

Etant donné $t = \{u, v, w\}$, un élément de \mathcal{T} , on dit que t est un triangle dans un graphe G généré aléatoirement si $\{u, v\}$, $\{v, w\}$ et $\{w, u\}$ sont des arètes de G.

Pour tout $k \in [1, r]$, on note Y_k la variable aléatoire de Bernoulli associée à l'événement « t_k est un triangle de G » et Z_n la variable aléatoire égale au nombre de triangle de G.

Par exemple si n=5 et le graphe de G est représenté ainsi,



alors $Z_5 = 3$.

- **1.** Quelle est la valeur de r en fonction de n?
- **2.** a. Soit $k \in [1, r]$. Posons $t_k = \{u, v, w\}$ avec u < v < w. Montrer que $Y_k = T_{u,v} T_{v,w} T_{u,w}$.
 - **b.** En déduire que, pour tout $k \in [1, r]$, Y_k suit la loi de Bernoulli de paramètre p^3 .
 - **c.** Justifier que $Z_n = \sum_{k=1}^r Y_k$. En déduire que $E(Z_n) = \binom{n}{3} p^3$.

 \blacktriangleright On s'intéresse à la variance de Z_n .

Si i et j appartiennent à [1, r] et sont différents, on note $i \equiv j$ lorsque t_i et t_j ont exactement deux éléments en commun et $i \not\equiv j$ dans le cas contraire.

On note \mathcal{E} l'ensemble des couples (i,j) tels que $i \equiv j$, et \mathcal{F} l'ensemble des couples (i,j) tels que $i \neq j$ et $i \not\equiv j$.

On désigne par a_n le nombre d'éléments de \mathcal{E} .

3. a. Montrer que :

$$V(Z_n) = \text{Cov}\left(\sum_{i=1}^r Y_i, \sum_{j=1}^r Y_j\right) = \sum_{(i,j) \in [\![1,r]\!]^2} \text{Cov}(Y_i, Y_j)$$

b. Montrer que si $(i,j) \in \mathcal{F}$, Y_i et Y_j sont indépendantes. En déduire que :

$$V(Z_n) = \sum_{i=1}^r V(Y_i) + \sum_{(i,j)\in\mathcal{E}} \operatorname{Cov}(Y_i, Y_j)$$

c. En conclure que :

$$V(Z_n) = rp^3(1-p^3) + \left(\sum_{(i,j)\in\mathcal{E}} E(Y_iY_j)\right) - a_np^6$$

- ▶ On note $\Delta_n = \sum_{(i,j)\in\mathcal{E}} E(Y_i Y_j)$.
- **4.** Montrer que si $i \equiv j$, $E(Y_iY_j) = p^5$ et en déduire que $\Delta_n = a_np^5$. En conclure que : $V(Z_n) = \binom{n}{3}(p^3 - p^6) + a_n(p^5 - p^6)$.
- **5.** Calcul de a_n .
 - a. Déterminer le nombre de triplets $(\{u,v\},w,y)$ où (u,v,w,y) sont quatre éléments distincts de l'ensemble [0,n-1].
 - **b.** En déduire que $a_n = \frac{n(n-1)(n-2)(n-3)}{2}$.

Partie 2 – Nombre aléatoire de triangles

On se donne un graphe G généré par le procédé décrit dans le préambule.

On définit la fonction $\operatorname{supprimeDer}(L)$ qui, si L est la liste des listes d'adjacence du graphe G dont les sommets sont $0, 1, \ldots, n-1$ modifie L afin qu'elle devienne la liste des listes d'adjacence du graphe G', dont les sommets sont $0, 1, \ldots, n-2$, obtenu en supprimant dans G le sommet n-1 et les arètes contenant ce sommet.

```
def supprimeDer(L):
 s = len(L)-1
 L.pop() # supprime le dernier élément de la liste L
 for a in L:
     if s in a:
         a.remove(s) # supprime s dans la liste a
```

6. Compléter la fonction suivante pour qu'elle retourne le nombre de triangles dont un des sommets est le sommet s dans le graphe G dont la liste des listes d'adjacence est L:

```
def triangles2s(s,L):
cpt = 0
adj = L[s]
for i in range(len(adj)):
   for j in range(...,len(adj)):
     if ... in L[...]:
     cpt += 1
return cpt
```

- 7. Ecrire une fonction nbTriangles(L), utilisant les deux fonctions précédentes, qui retourne le nombre de triangles du graphe G dont la liste des listes d'adjacence est représentée par L.
- 8. On suppose que la fonction graphe(n,p) génère un graphe aléatoire suivant les hypothèses décrites dans le préambule. Expliquer ce que retourne la fonction suivante :

```
def fonctionMystere(n):
cpt = 0
for i in range(1000):
   L = graphe(n,1/n)
   if nbTriangles(L) == 0:
     cpt += 1
return cpt/1000
```

Partie 3 – Inégalité de Harris

k désigne un entier naturel non nul.

- Soit f une fonction définie sur une partie \mathcal{D} de \mathbb{R}^k à valeurs dans \mathbb{R} . Si $k \geq 2$, on dit que f est k-croissante sur \mathcal{D} si, pour tout (x_1, \ldots, x_k) élément de \mathcal{D} et $i \in [1, k]$, $t \mapsto f(x_1, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_k)$ est croissante sur son ensemble de définition. Si k = 1, une fonction 1-croissante sur \mathcal{D} est simplement une fonction croissante sur \mathcal{D} .
- \bullet On définit de même la notion de fonction k-décroissante.
- On considère X_1, \ldots, X_k des variables aléatoires finies. On admet le résultat suivant (théorème de transfert d'ordre k): Si f est une fonction définie sur $X_1(\Omega) \times \ldots \times X_k(\Omega)$ et $Y_k = f(X_1, \ldots, X_k)$ alors

$$E(Y_k) = \sum_{(x_1, \dots, x_k) \in X_1(\Omega) \times \dots \times X_k(\Omega)} f(x_1, \dots, x_k) \mathbb{P}([X_1 = x_1] \cap \dots \cap [X_k = x_k])$$

On note (H_k) la propriété suivante :

Si X_1, \ldots, X_k sont des variables aléatoires finies indépendantes, f et g deux fonctions définies sur $X_1(\Omega) \times \ldots \times X_k(\Omega)$ et k-croissantes sur cet ensemble, et si l'on pose $Y_k = f(X_1, \ldots, X_k)$ et $Z_k = g(X_1, \ldots, X_k)$, alors :

$$E(Y_k Z_k) \geqslant E(Y_k) E(Z_k)$$
 (inégalité de Harris)

- **9.** Dans cette question, k=1, on pose $X=X_1$ une variable aléatoire finie, f et g sont deux fonctions croissantes sur $X(\Omega)$.
 - **a.** Montrer que pour tout $(x,y) \in (X(\Omega))^2$, $(f(x) f(y))(g(x) g(y)) \ge 0$.
 - **b.** Montrer que pour tout $y \in X(\Omega)$,

$$E(f(X)g(X)) + f(y)g(y) \geqslant g(y)E(f(X)) + f(y)E(g(X))$$

c. En déduire que (H_1) est vraie.

10. On suppose que (H_k) est vraie pour un certain k et on considère X_1, \ldots, X_{k+1} des variables aléatoires finies indépendantes, f et g deux fonctions définies sur $X_1(\Omega) \times \ldots \times X_{k+1}(\Omega)$ et (k+1)-croissantes.

On pose $Y_{k+1} = f(X_1, \dots, X_{k+1})$ et $Z_{k+1} = g(X_1, \dots, X_{k+1})$.

a. A l'aide des théorèmes de transfert d'ordre k + 1 et k, montrer que :

$$E(Y_{k+1}Z_{k+1}) = \sum_{x \in X_{k+1}(\Omega)} E(f(X_1, \dots, X_k, x)g(X_1, \dots, X_k, x)) \mathbb{P}(X_{k+1} = x)$$

b. Justifier que pour tout $x \in X_{k+1}(\Omega)$:

$$E(f(X_1, ..., X_k, x)g(X_1, ..., X_k, x)) \geqslant E(f(X_1, ..., X_k, x))E(g(X_1, ..., X_k, x))$$

- **c.** On pose pour tout $x \in X_{k+1}(\Omega)$, $u(x) = E(f(X_1, \ldots, X_k, x))$ et $v(x) = E(g(X_1, \ldots, X_k, x))$. Montrer que u et v sont croissantes sur $X_{k+1}(\Omega)$ et $E(Y_{k+1}Z_{k+1}) \geqslant E(u(X_{k+1})v(X_{k+1}))$.
- **d.** En conclure que (H_{k+1}) est vraie. Conclure.
- e. La propriété (H_k) reste-t-elle vraie si f et g sont k-décroissantes? Justifier votre réponse. Que se passe-t-il si l'une est k-croissante et l'autre k-décroissante?

Partie 4 – Inégalité de Janson et application

On reprend les notations de la partie 1.

De plus, pour tout $i \in [1, r]$, on pose $Z_{n,i} = \sum_{k=1}^{i} Y_k$. On remarquera que $Z_{n,r} = Z_n$.

Dans cette partie on établit un encadrement de $\mathbb{P}(Z_n = 0)$.

11. Justifier que $\bigcap_{0\leqslant 0< v\leqslant n-1} [T_{u,v}=0]\subset [Z_n=0].$ En déduire que

$$\mathbb{P}(Z_n = 0) \geqslant (1 - p)^{\binom{n}{2}} > 0$$

- **12.** Montrer que pour tout $i \in [1, r]$, $\mathbb{P}(Y_i = 0) = E(1 Y_i)$ et $\mathbb{P}(Z_{n,i} = 0) = E\left(\prod_{k=1}^{i} (1 Y_k)\right)$.
- **13. a.** On pose $m = \binom{n}{2}$. Justifier brièvement que, pour tout $k \in]\![1,r[\![,Y_k \text{ s'exprime comme une fonction } m\text{-croissante sur }\{0,1\}^m \text{ des variables aléatoires } T_{u,v} \text{ pour } u < \text{éléments de } [\![0,n-1]\!].$

En déduire que, pour tout $i \in [2, r]$, $1 - Y_i$ puis $\prod_{k=1}^{i-1} (1 - Y_k)$ s'expriment comme des fonctions m-décroissantes des variables aléatoires $T_{u,v}$ pour u < v éléments de [0, n-1].

b. En conclure que, pour tout $i \in [2, r]$, $\mathbb{P}(Z_{n,i} = 0) \geqslant \mathbb{P}(Z_{n,i-1} = 0)\mathbb{P}(Y_i = 0)$ puis que :

$$\mathbb{P}(Z_n = 0) \geqslant \prod_{k=0}^r \mathbb{P}(Y_k = 0) \text{ puis } \mathbb{P}(Z_n = 0) \geqslant (1 - p^3)^{\binom{n}{3}}$$

14. Inégalité de Boole. Montrer par récurrence sur $k \ge 2$ que si B_1, \ldots, B_n sont des événements, on a :

$$\mathbb{P}\left(\bigcup_{i=1}^k B_i\right) \leqslant \sum_{i=1}^k \mathbb{P}(B_i)$$

▶ Si A est un événement de probabilité non nulle, on rappelle que la probabilité conditionnelle sachant A est notée \mathbb{P}_A . On admet qu'elle possède les mêmes propriétés que la probabilité \mathbb{P} . En particulier l'inégalité de Boole est vérifiée par \mathbb{P}_A .

De plus si X est une variable finie, on note $E_A(X)$ l'espérance de X pour la probabilité \mathbb{P}_A ce qui signifie que :

$$E_A(X) = \sum_{x \in X(\Omega)} x \mathbb{P}_A(X = x)$$

Cette espérance conditionnelle possÃ" de les mêmes propriétés que l'espérance, en particulier l'inégalité de Harris vue dans la partie 3.

- **15.** Soit A, B et C trois événements tels que $\mathbb{P}(B \cap C) \neq 0$ et $P(A \cap C) \neq 0$. Montrer que $\mathbb{P}_{B \cap C}(A) \geqslant \mathbb{P}_{C}(A)\mathbb{P}_{A \cap C}(B)$.
 - ▶ On admet que les probabilités conditionnelles qui interviennent dans la suite sont bien définies.
- **16.** Pour tout $i \in [1, r]$, on pose $A_i = [Y_i = 0]$. On note aussi $I_i = \{j \in [1, i-1]/j \equiv i\}$ et $J_i = \{j \in [1, i-1]/j \not\equiv i\}$.

Soit
$$i \ge 2$$
. On définit $B_i = \bigcap_{j \in I_i} A_j$ et $C_i = \bigcap_{j \in J_i} A_j$, ainsi on a : $B_i \cap C_i = \bigcap_{j=1}^{i-1} A_j$.

a. Justifier que A_i et C_i sont indépendants. En déduire que

$$\mathbb{P}_{B_i \cap C_i}(\overline{A_i}) \geqslant \mathbb{P}(\overline{A_i}) \mathbb{P}_{\overline{A_i} \cap C_i}(B_i)$$

- **b.** Etablir que $\mathbb{P}_{\overline{A_i} \cap C_i}(B_i) \geqslant 1 \sum_{j \in I_i} \mathbb{P}_{\overline{A_i} \cap C_i}(\overline{A_j})$.
- c. On admet provisoirement que pour $j \in]\![1,i-1]\!]$:

$$\mathbb{P}_{\overline{A_i} \cap C_i}(\overline{A_j}) \leqslant \mathbb{P}_{\overline{A_i}}(\overline{A_j}) \tag{1}$$

En déduire que
$$\mathbb{P}_{B_i \cap C_i}(A_i) \leqslant 1 - \mathbb{P}(\overline{A_i}) \left(1 - \sum_{j \in I_i} \mathbb{P}_{\overline{A_i}}(\overline{A_j})\right)$$
.

d. Justifier que pour tout $x \in \mathbb{R}$, $1 - x \leq \exp(-x)$ et en déduire que :

$$\mathbb{P}_{B_i \cap C_i}(A_i) \leqslant \exp\left(-\mathbb{P}(\overline{A_i}) + \sum_{j \in I_i} \mathbb{P}(\overline{A_j} \cap \overline{A_i})\right)$$

- 17. On rappelle que $\Delta_n = \sum_{(i,j)\in\mathcal{E}} E(Y_iY_j)$ où \mathcal{E} a été défini dans la partie 1 à la suite de la question 3.
 - a. Montrer que $\mathbb{P}(Z_n = 0) = \mathbb{P}\left(\bigcap_{i=1}^r A_i\right) = \mathbb{P}(A_1) \prod_{i=2}^r \mathbb{P}_{B_i \cap C_i}(A_i).$
 - **b.** En conclure que :

$$\mathbb{P}(Z_n = 0) \leqslant \exp\left(-E(Z_n) + \frac{\Delta_n}{2}\right)$$
 (inégalité de Janson)

c. En déduire l'encadrement :

$$(1-p^3)^{\binom{n}{3}} \leqslant \mathbb{P}(Z_n=0) \leqslant \exp\left(-\binom{n}{3}p^3 + \frac{a_n}{2}p^5\right)$$

18. Soit c un réel strictement positif.

a. Montrer que
$$\lim_{n\to+\infty} -\binom{n}{3} \left(\frac{c}{n}\right)^3 + \frac{a_n}{2} \left(\frac{c}{n}\right)^5 = -\frac{c^3}{6}$$
.

b. Etablir que
$$\lim_{n\to+\infty} \binom{n}{3} \ln \left(1 - \frac{c^3}{n^3}\right) = -\frac{c^3}{6}$$
.

c. On suppose que n > c et $p = \frac{c}{n}$. En déduire que la limite de $\mathbb{P}(Z_n = 0)$ quand $n \to +\infty$.

19. On reprend les notations de la partie 2.

L'exécution de l'instruction fonction Mystere (100) affiche dans la console Python 0.849. Est-ce cohérent avec le résultat de la question précédente si on considère que pour x assez petit, e^{-x} est proche de $1-x+\frac{x^2}{2}$?

20. Démonstration de (1).

Soit m un entier plus grand que 2. On considère X_1, \ldots, X_m des variables de Bernoulli indépendantes et I un sous-ensemble de [1, m[. On note J le complémentaire de I dans [1, m[. On note J l'événement $\left[\prod_{i \in I} X_i = 1\right]$.

a. Montrer que, pout tout $(x_1, \ldots, x_m) \in \{0, 1\}^m$

$$\mathbb{P}_A([X_1 = x_1] \cap \ldots \cap [X_m = x_m]) = \begin{cases} \prod_{i \in J} \mathbb{P}(X_i = x_i) & \text{si } \prod_{i \in I} x_i = 1\\ 0 & \text{sinon} \end{cases}$$

- **b.** En déduire que les variables aléatoires X_1, \ldots, X_m sont indépendantes pour la probabilité conditionnelle \mathbb{P}_A .
- ▶ Soit $i \ge 2$. On reprend les notations de la question 16.

c. Montrer que pour
$$j \in]1, i-1[, \mathbb{P}_{\overline{A_i} \cap C_i}(\overline{A_j}) = \frac{E_{\overline{A_i}}(Y_j \prod_{k \in J_i} (1-Y_k))}{\mathbb{P}_{\overline{A_i}}(C_i)}.$$

 $\mathbf{d.}$ En utilisant l'inégalité de Harris, montrer que pour $j \in [\![1,i-1]\!]$:

$$\mathbb{P}_{\overline{A_i} \cap C_i}(\overline{A_j}) \leqslant \mathbb{P}_{\overline{A_i}}(\overline{A_j})$$

6